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Light Scattering Limits Situational Awareness

* Aerosols like fog create degraded visual environments and cause unacceptable down-time for
critical systems or operations

* Information is lost due to the random scatter of photons from tiny particles

* Impacts physical security, surveillance, navigation, tactical scenarios, remote sensing, and more

Simulated degraded visual environment at the
Sandia Fog Chamber Facility

[1] A. Mosk, Y. Silberberg, K. J. Webb, and C. Yang, Defense Technical Information Center ADA627354, 2015
[2] C. Dunsby and P. M. W. French, J. Phys. D: Appl. Phys. 36, R207-R227, 2003



3 ‘ Light Scattering Fundamentals
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*Ballistic light is exponentially attenuated with distance: [ = I, exp(—L/MFP) [Beer-Lambert law]
*Sandia Fog Chamber Mean Free Path (MFP)~1 m
*Time and coherence gating reject scattered light limiting imaging to L~10 MFP

*Using all photons could allow optical imaging to L~30 MFP or 2-4 times further

*Increased background from sunlight scattered into the detector
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Detection and Localization with Scattered Light

* Key question
* What can be done with scattered light in aerosols like fog?

* Interpretation of measured data with light transport model provides new information
* Detection: is an object there?

* Localization: where is the object?
* Imaging: what is the object?

* Potentially provided in real time for rapid decision making using existing infrastructure
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Examples from biomedical imaging [1,2]

[1] A. B. Milstein, M. D. Kennedy, P. S. Low, C. A. Bouman, and K. J. Webb, Applied Optics 44(12), 2300-2310 (2005).
[2] B. Z. Bentz, et al., IEEE Trans. Med. Imaging 39(7), 2472-2481 (2020).



5 I Sandia National Laboratory Fog Chamber Facility (SNLFC)
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6 | Measuring the Fog Scattering Parameters

Hs = Nz Os; 1
i

Ha = Nz Oq; N
i

Where

Us is the scattering coefficient (m™)

Ug is the absorption coefficient (m™)

N is the particle density (cm™)

n; is the fraction of N contributed by particles of diameter d;

0s; and 0, are the scattering and absorption cross sections computed
with Mie theory
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Fog Optical Properties are Highly Dependent on the Size Distribution

Particle Size Distributions
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8 I Radiative Transfer Equation (RTE)

Q- VI(r, Q) + (ug + u)I(r, Q) = ug j a0 F (@ > Q)i(r, @) + Q(r, Q)
41T

Where

I (r, ﬁ) is the radiance (J/m?/st) at position r in direction Q

Ug is the absorption coefficient (m™)

° U is the scattering coefficient (m™)

f (.Q' - ﬂ) is the scattering phase function for incident direction Q' and scattering direction €}

Q(r, ﬁ) is the radiance source function (J/m?/st)

[1] G. L. Bell and S. Glasstone, Nuclear Reactor Theory, U.S. Atomic Energy Commission, Washington DC (1970).



9 I New Light Transport Model Enables Computational Sensing in Fog

Applicability domains of approximate methods [1]:
(1) small-angle approximation

(2) small-angle diffusion approximation

(3) diffusion approximation
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A X

I(r,Q) = Z—;L dR exp[—(us + uo)R] [¢(r — RQ) + 3gJ(r — RQ) - Q]

* ¢ is the fluence rate (J/m?)
] is the flux density (J/m?)

[1] E. P. Zege, et. al, Vol. 349. New York: Springer-Verlag, 1991.

[2] B. Z. Bentz, et. al, Optics Express 29(9), 13231-13245, 2021.



10 | Experimental Verification
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11 I Modeling Objects

f(x) =Y t+ S(ro;d) + FR(ro-d)

/N

Measurement Blocked Additional in-scattered Z
without object in-scattered light reflected light :
J g g Fog RO plXCL

Where
* x =[r, d,T],d is the object size and I' is the reflection coefficient

_ _ S source T
Yo, = fy dRiexpl—(us + R [(ra — R ) +3g) (1 — RiQ;) - Q] S

© Si(ro,d) = —&fRO: dR; exp[—(us + ua)Ri] [¢(rq — RQ; ) +3g)(ra — RiQ;) - Q;] X

41T

‘ Ri(ro: d) = I(ro: _ﬁi) exp[_(ﬂs + .ua)Ro]

[1] B. Z. Bentz, et. al, Optics Letters 47(8), 2000-2003, 2022.



Computation: 4 sec

12 I Fog Transmission Simulation (n = 0.9,d = 0.2 m)
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13 | Experimental Verification

[1] B. Z. Bentz, et. al, Optics Letters 47(8), 2000-2003, 2022.

Data

Model

2 0 2 4

-4 -2 0
x" (mm) x" (mm)
Horizontal Line Vertical Line
2.5
2
1.5
1
m— data
05 m—— model
-4 -2 0 -2 0 2
X' (mm) y' (mm)

Fog Optical Parameters:

ps = 0.236 m"
U, = 1.44 x 1078 m-"
g = 0.802



14 | Fog Reflection Simulation (n = 0.9,d = 0.2 m)

Computation: 4 sec
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15 | Experimental Verification
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All models are wrong, but some are useful!

*Detection: is an object there?
*Localization: where is the object?

*Imaging: what 1s the object?
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17 I Measurement Model (binary hypothesis)

1 1
po(y) = exp (——Ily—wy 1% )
T J@mP 2 o
1

Jaor "

1
P1x(¥) = {— S lly —wf (x)lli—l}

Where

* Y is the measurement vector of length P

° Y, 1s the expected measurement in the absence of an object

* f(x) is the expected measurement in the presence of an object
* x = [r,,d,T']is the opaque object parameters

* Y is the covariance matrix with [Y];; = a|y;]

* «a is a scaler parameter of the measurement system

° W is a proportionality constant

° ||u||]2(—1 = u’Y 1u and T is the transpose

[1] A. B. Milstein, M. D. Kennedy, P. S. Low, C. A. Bouman, and K. J. Webb, Applied Optics 44(12), 2300-2310 (2005).
[2] G. Cao, V. Gaind, K. J. Webb, and C. A. Bouman, Opzes Letters 32(20), 3026-3028 (2007).



18 I Object Detection

*Let 8 = [x, w] be the parameters of interest

*Neyman-Pearson lemma:

* Likelihood ratio test (LRT) produces the highest probability of detection for
specified false alarm rate Pg

P1,x(Y)

Ly.f)=n po(¥)

> kp,.(6) Detection:
. h"(0)[y —wy,] > kp,(6)
= [Wf(x) = wyol™Y 'y = wyol = S Ilwf(x) = wy,lly-1

Po(q) P1.x(q)

= h"'(0)[y — wy,] — c(6)

*Then, since ¢(0) is a constant, the detection threshold becomes

h' (O)[y — wy,] > kp.(6)




19 | Object Detection

*We define ¢ = h" (8)[y — wy,] as the decision statistic to compare to kp,(8) threshold

°q has a normal distribution under the two hypothesis

1 2
po(q) = exp <— q—)

V2o, 20¢
Detection:
1 (q — @)° q > kp (6)
= exp [— Pr
pl,x(CI) \/Z_ﬂO'q p [ 20_5

Po(q) P1.x(q)

“Where § = 02 = [[Wf(x) — wy,ll3-1




20 ‘ Object Detection

Pr = j Do (q) dq
kpp(6)

= 1erfc kpe (0)
5 ﬁaq - Error |
Functions

Detection:

= q > kp,(0)
Pp = f P1,x(Q) dq ’
kpp(6)

lerfc (kPF 9) - 51)
A

ka(H) — \/E qurfinV(ZPF)

Po(q) P1.x(q)




21 I Simulated Probability of Detection (Pp)
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22 I Fog Chamber Pp as a Function of Depth and p;

I
Reflection Geometry , o
Detection Limit: z = 22 exp(—12u;) + 9exp(—us) ‘
*Simulation properties:
- 30 dB SNR 1
- Pp=3%
© g=038 — 0.8}
- I'=09 ~

- d=02m E 06'
:r.o 04 I
0.2

[1] B. Z. Bentz, et. al, Optics Letters 47(8), 2000-2003, 2022.
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23 | Localization using the Maximum Likelihood Estimate (MLE)

* T, and d can be estimated by minimizing

c(ro,d) = min||ly — wy, —wS(ro,d) — WIR(r,, d)|ly-1]

* Take derivatives and solve for closed form estimates of w and I'

* Call them W and T
[y, + S(ro,d) + FR(ro, d)] Y1y
~ 2
|lyo + S(ro,d) + TR(ro, A,

w =

[y _ Wyo _ WS(TO, d)]TY_lR(ro: d)
WIR(r, A5

[ =

2

C(rOJ d) = ||y — Wyo _ WS(TO, d) - WFR(T'O, d)”Y—l



24 I Object Position, Diameter, and Reflection Coefficient Estimated Correctly

Transmission

*True values:
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Image “Denoising”

f(x) =Yo t+ S(ro»d) + FR(ro»d)

/N

Measurement Blocked Additional in-scattered
without object in-scattered light reflected light
(background)

*Measurement without object is “noise”
*Model can predict this contribution

*Influence can be removed from the image



26 I Image “Denoising”

Transmission y Transmission Y jean
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fls = arg min||ly — wy, (.us)”\Z(—l " , *
Hs
o 4 -2 0 2 4
_ YoY Yy N~
W=iry—=1, W= w(is) Reflection Y cjean
. 2
A “Denoise” 0
Yclean = Y — WY, (i) >
-2
4 -2 0 2 4
X" (mm)

*Maximum likelihood estimate of U, minimizes difference between measured and modeled y,,

°*Reduced error improves image contrast for interpretation
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Conclusions

* The weak angular dependence approximation to the RTE can be sufficient for modeling photon
transport in fog and with objects present

* This model can be leveraged for detection and localization

* The model can be leveraged within a computational sensing framework

* Detection: is an object there?
* Localization: where is the object?

* Imaging: what is the object?

*Future work: study convergence, leverage tabletop fog chamber, pursue machine learning inversion
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30 I What is fog!?

* Micron sized water droplets suspended in air
- < 1 km visibility

* Radiation fog — humid air cooled by emitted radiation reaches the dew point temperature

* Advection fog —humid air cooled while passing over colder wet surface

Water Phase Diagram

[ ] fa (8] [o7] |
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[1] J. B. Wright, J. D. Van der Laan, A. Sanchez, S. A. Kemme, and D. A. Scrymgeour, Proc. SPIE 10197, 2017
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Enhancing Fog Droplet Generation Techniques

Mechanical Technique Injection Technique Benefits of Injection Technique
Droplets are generated via pressurized spray| | Dry aerosols are injected into a * Fog is more relevant to ambient formation
nozzle with salt water. humid/supersaturated environment. mechanism

* (Can observe droplet nucleation and
Instrumentation: Design improvements: diffusional growth
*  Malvern Spraytec * Insulation * Able to control T, RH, and dry aerosol
*  Three-wavelength Transmissometer * Cooling coil concentration

* Heated humidifiers e Stable RH conditions allow for the

Measured Parameters: generation of unimodal fog (RH drops

> Droplet size distribution New Instrumentation:
* SMPS (10 to 480 nm) ]
* APS/OPCs (~0.5 to >20 pum) technique)
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32 I With Purdue Universityl!l: Speckle Correlation Imaging through Fog

2 Minutes After Spray
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33 ‘ Transmission Simulation in Homogeneous Fog
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4 ‘ Transmission Simulation in Homogeneous Fog
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Light source here
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5 ‘ Transmission Simulation in Homogeneous Fog
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6 ‘ Transmission Simulation in Homogeneous Fog

Light source here
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37 | Radiative Transfer Equation (RTE)

Q- VI(r, Q) + (ug + u)I(r, Q) = ug j a0 F (@ > Q)i(r, @) + Q(r, Q)
41T

Where

I (r, ﬁ) is the radiance (J/m?/st) at position r in direction Q

Ug is the absorption coefficient (m™)

° U is the scattering coefficient (m™)

f (.Q' - ﬂ) is the scattering phase function for incident direction Q' and scattering direction €}

Q(r, ﬁ) is the radiance source function (J/m?/st)

[1] G. L. Bell and S. Glasstone, Nuclear Reactor Theory, U.S. Atomic Energy Commission, Washington DC (1970).



33 I Continuity and Diffusion Equations

Applicability domains of approximate methods [1]:
(1) small-angle approximation
(2) small-angle diffusion approximation

V-J(r) + u,(r)®(r) = S(r) (3) diffusion approximation
Where
c ¢p(r) = f a dQI (r, ﬁ) is the fluence rate (J/m?)
« J(r) = [,_dQQI(r,Q) is the flux density (J/m?
- S(r) = Lm dQQ (r, ﬁ) is the source (J/m?)

H

Optical depth

If: J(r) = —=D(r)Vep(r) (Fick’s first law of diffusion) S’\W“ ==
D =1/3(us + u,) is the diffusion coefficient (m) A 2‘

* U = Ug(1 — g) is the reduced scattering coefficient for anisotropy g

—V-D@)Ve() + pua(r)ep(r) = S(r)

[1] E. P. Zege, A. P. Ivanov, and I. L. Katsev, New York: Springer-Verlag, (1991).



Analytic Solutions to the Diffusion Equation isotropic Light

Source
o . . ¢(r) ] (7‘)
*The diffusion equation has well known solutions 10° 10°
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40 I Radiative Transfer Equation (RTE)

Q- VI(r, Q) + (g + p)I(r Q) = e j dQ'f (8 - 0)I(r, @)

Ty

Q-VI(r,Q) + (uq + p)I(1, Q) = Qs(r, Q)

Q- VI(r, Q) exp[(uq + u)Q - 1] + (g + u)I(r, ) exp[(g + 1)@ - 7] = Q5(7, Q) exp[(ug + ps)Q - 7]

Q- V{I(T, ﬁ) exp[(ﬂa + Hs)ﬁ | T]} = Qs(rr ﬁ) exp[(ﬂa + .us)ﬁ 7]

t

Derivative in Q
direction



41 ‘ Define Line-of-Sight

Q-V{(r Q) exp[(ug + 1)@ - ]} = Qs(r, Q) exp[(ug + us)Q - 7]

a.v > 0.2a 5 2
. - PR _ —
OR OR

_ ~ r . _ _ Fog
I(r, Q) exp[(ug + 1) - 1] = j dRQs(r — RQ, Q) exp[(g + ps)Q - (r — RQ)]
0 =R
. r — RQ
I(r,Q) = j dRQs(r — RQ, Q) exp[—(uq + us) R] source T
0

41T

I(r, Q) = u, f dR expl—(ug + p) R] [ d@'F(& = 0)I(r — RO, 0)
0
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Solving the RTE with Weak Angular Dependence

*Radiance at a detector at position 7 in homogeneous fog

1(r, Q) = ug j

0

dR expl— (s + 1) j dQ’ f(Q' - Q)i(r - RO, Q')
41T

* Assuming isotropic scatter

I(r,Q) = Z—;L dR exp[—(us + )R] ¢(r — RQ)

*Assume weak angular dependence

1 .3 SO
I(r—RQ,Q)zE¢(r—Rﬂ)+E1(r—Rﬂ)-ﬂ

[1] B. Z. Bentz, et. al, Optics Express 29(9), 13231-13245, 2021.

——
————-—-—
- -

source Tg
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Solving the RTE with Weak Angular Dependence

_ °° o 1 . 3 o~
I(r,Q):,quO dR exp[—(us + pa)R] dQ’f(Q’eﬂ)[E¢(r—RQ)+E1(r—RQ).Q]

41T

¢(r — RQ)

- Jr=RY) [ aar(@ - a)

41T .

B / ~ o

_ ® 1 . 3 SR
I(r,Q) = u, jo dR exp[—(us + po)R] [Eqb(r —RQ) + ﬁ](r — RQ) - Q]

da’ f(Q' - Q) +

4T

1r,8) = 1 | R expl—(u + )R]

S

I(r,0) =22 jo dR expl—(us + u)R] [¢(r — RR) + 3gJ (r — RQ) - 0]

f

Additional anisotropic term
[1] B. Z. Bentz, et. al, Optics Express 29(9), 13231-13245, 2021.



Solving the RTE with Weak Angular Dependence

I(r, @) = 22 jo AR expl—(its + )R] [$(rg — R ) + 3] (rq — RA) - @]

*Diffusion equation analytic solutions

>exp <— %Ir — rS|>

4D

So(r—r15) Ua/D 1 Ha
J(r) = [ ](lr r|? + I — 7'5|3> eXp <—\/%|T —TS|>

|T—TS|

Mﬂ—(s

[1] B. Z. Bentz, et. al, Optics Express 29(9), 13231-13245, 2021.

——
————-—-—
- -

source Tg




45 | Spatial Distribution of Light Integrated at Detector

I(r,Q) = 2= [, dR exp[—(us + )R] [¢p(r — RQ ) + 3gJ(r — RQ) - Q]

I(r,Q) = [, dRL(r,Q,R)

*Contribution of in-scattered light as a function of depth

°T = 13.5/MFP is the number of mean free path lengths between the
source at 13.5 m and the detector at the origin

*Transition from moderately scattering regime (T < 10) to highly
scattering regime (T > 10)

* 7 < 10: small angle approximation, memory effect, shower curtain effect

L(rg, 2, R) (uJ/m?*/sr)

* T > 10: diffusion approximation

[1] B. Z. Bentz, et. al, Optics Express 29(9), 13231-13245, 2021.



Modeling Opaque Objects

46

Ro
I(rqg, Q) = Z—;L dR exp[—(us + p)R] [¢(rg — RQ) 4+ 3gJ(rg — RQ) - Q| + TI(r,, —Q) exp[—(us + ta)R,]

\ / Z

Pixel line of sight only Object surface reflection .
extends from r to r,, Fog R pixel
o ~

Where

¢ T is the reflection coefficient at object position 1, and

u. (Ro source T g
I(r,,—Q) = ﬁ dR exp[—(us + ua)R1 [¢p(r, + RQ) — 3g](r, + RQ) - Q]
0
\/ X
Integration along pixel line For simplicity, we assume ¢
of sight fromr, tor and J unaffected by object



47 I Reflection: Varying Object Distance along Z and Diameter

d =0.03m
d=0.15m
d=0.2m

y' (mm) y' (mm)

Y' (mm)

r, = (=0.2,0,4) m

18.5

18

17.5
2 0 2 4

18.5
18
17.5

2 0 2 4

18.5
18
17.5

2 0 2 4
x' (mm)

r, = (=0.2,0,5) m

18:3
18
178
2 0 2 4
18.5
18
17.5
2 0 2 4
18.5
18
17.5
2 0 2 4
x' (mm)

r, = (=0.2,0,6) m

18.5
18
175

2 0 2 4

) 18.5
0 18
) 17.5

2 0 2 4

> 18.5
0 18
-2 17.5

2 0 2 4
x' (mm)

r, = (—0.2,0,7) m

18.6 5
18 =
EM
17.5%
2 0 2 4
18.5 %
18 o
E{\."
175 %
2 0 2 4
185 7
18 o
EK\J
17.5%
20 2 4

x' (mm)
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Localization using the Maximum Likelihood Estimate (MLE)

* Let 8 = [x, w] be the parameters of interest

0 = arg;naX[pl,ro 62]
= arg;naX[ln P1r, ]
1 P 1 2
= arg max |~ [ [YI] = 5 ly = wf(OI7-1]

= arg min[|ly — wf GOll}-]



49 | Localization using the Maximum Likelihood Estimate (MLE)

* T, and d can be estimated by minimizing

c(ro,d) = min||ly — wy, —wS(ro,d) — WIR(r,, d)|ly-1]

* Take derivatives and solve for closed form estimates of w and I'

* Call them W and T
[y, + S(ro,d) + FR(ro, d)] Y1y
~ 2
|lyo + S(ro,d) + TR(ro, A,

w =

[y _ Wyo _ WS(TO, d)]TY_lR(ro: d)
WIR(r, A5

[ =

2

C(rOJ d) = ||y — Wyo _ WS(TO, d) - WFR(T'O, d)”Y—l
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Localization using the Maximum Likelihood Estimate (MLE)

* Summary

c(ro,d) = |y = Wy, — WS(ro,d) — WER(ry, |5,

[yo + S(r,,d) + TR(r,, d)]TY‘ly
¥ + S(ro,d) + FR(ro, D),

~

w =

[y _ WJ’O - ﬂ-’/‘S‘(’rO; d)]TY_lR(rOI d)

[= —
W|IR(ro, d)|I§-1

[#,,d] = arg min c(r,, d)
ro.d

W= w(#,d,D



