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P Accurate modeling and simulation at ultra-high frequencies (UHF)

The goal: Predict the response of barrier materials to coupled

multi-physics phenomena. Our focus? Mechanical wave ) ﬂ | ﬂ
propagation. 5.
* Who cares: DoD, DoE, engineers, designers, and analysts -3 T
- Our team’s objective: Develop novel simulation approaches to N u A 4“
overcome UHF limitations " " Distance from forcing
* Impacts: . -
- Rapid materials discovery]' Model-based design & response prediction
* Multi-physics simulations 7.5X
 Why SNL: Leaders in engineering, ModSim codes, computing
capability
« Sierra: mature, massively parallel simulation codes
* Trilinos: scalable numerical algorithms Y

« HPC: state-of-the-art heterogeneous computing platforms
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/ Modeling high-frequency wave propagation
/i

U(w)e™! —>_ «— Absorbing BC
L’gg x Iz 1
82;;(;) + k*p(z) =0 Helmholtz equation
@ = —iwp,U
Wavenumber: k = % g}f »=0 Boundary conditions
9z ot = —ikp(1)

Example: Semi-infinite duct

Rouse, Walsh, ASA 2019

Length = 3 mm, Freq = 10 MHz
Ha.munls per i = 6.9657, L, Rel. Error = 2.2715%
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/ Modeling high-frequency wave propagation
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= Excitation frequency: 20 Hz
= 16 eight-node hexahedral elements per wavelength Absorbing BC
tw—-EE e e e e e e P e P / -
!: 13.6 m :! |'-'|— 0.5m
= Analytical solution:  p(z) = pocU(w)e™ %=
Length = 13.555 m, Freq = 20 Hz
Elements per A\ = 16.4478, L2 Rel. Error = 1.9182%
3 T : ' -
|
L, relative error = 1.9 % 1}
F :Hp_ph||2 E-U
||p/|2 i
L 1/2 -1 o
[ = U |u(z)|2dz} Percent error at end = 2.9 %
-------- Real FEM
— Imag FEM
Rouse, Walsh, ASA 2019 % 2 4 6 8 10 1 14
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“ Modeling high-frequency wave propagation

= Excitation frequency: 100 Hz
= Same 16 eight-node hexahedral elements per wavelength

Absorbing BC

/

l 136 m o |'-'|— 0.5m

Length = 13.555 m, Freq = 100 Hz
Elements per \ = 15.9418, L, Rel. Error = 8.941%

M

U(w)—

1 |
. — 0 m
L, relative error =8.9 % D 15Pa
o
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PY 8 ot d \x Error atend = 15.5 %
memamams Real FEM
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Rouse, Walsh, ASA 2019

"Pollution error” creeps in at higher frequencies




P Pollution error in high-frequency problems

= Relative error for classical finite element solution to the Helmholtz equation:

Element size: h U — U Lh kh
hil
Polynomial order: p | | < C’l( ) Cng( ) ., kh <1
Structure length: L |uls p p
\_'_J | : J
/' "
Interpolation error: how well shape ‘Pollution effect”’: Accumulation of
functions approximate the solution error over the length of the
‘Babuska & Sauter, 1997 structure
. Ef,}menl_s FIL-:rnEt: 1=l]3ll:.;r'.:: IF.:B:BT tfr:llr": 7_5.2355%_
Y |

0.4

#{Particle Displacement},

Addressing pollution is the key to achieving accuracy at UHF




P Addressing pollution in high-frequency problems

= Brute force! Domain decomposition, massively parallel continuous Galerkin finite elements (CGFE)
= Pushed as far as possible with classical finite elements and traditional element formulations
= Sierra Mechanics implementation is the state of the art!

= Higher-order CGFE
= Going beyond quadratic approximations with p-elements drastically improves efficiency
= Enriched methods

= Others in the literature...

= One that stands out; Discontinuous Petrov-Galerkin
= Developed by Prof. Demkowicz at UT Austin
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Discontinuous Petrov-Galerkin (DPG) method

4

Like classical finite elements, but...

Trial functions are continuous, test functions are discontinuous
o Compute optimal test functions on the fly
o Built-in error indicator

Ultraweak formulation
o Positive definite matrices

Pollution is diffusive rather than dispersive
o Pollution free in 1D

Unconditionally stable

o Allows for hp-adaptivity R
CGFE
L. Demkowicz and J. Gopalakrishnan. ICES REPORT 15-20, The University of Texas at Austin, 2015.
J. Zitelli and |. Muga and L. Demkowicz and J. Gopalakrishnan and D. Pardo and V. M. Calo. Journal of Computational

Physics, 230(7): 2406-2432, 2011.
S. Petrides. PhD Dissertation, The University of Texas at Austin, 2019.
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P Discontinuous Petrov-Galerkin discretizations

= Simplest case: Poisson’s equation Vip=f

o~
)

= Vo

.

DPG ‘ultraweak’ formulation:

CGFE formulation: _ (Y - ) Ay — b GdQ+
—/%.%dmr/v(w-ﬁ)dr—/ffudQ ~ o ~ o
0 r 0 AT ) dly + | Ypvdly = [ fodQ
T Pk; T Pk T Qk T
. Foreach
Expressed for Trace Flux

element k

entire domain
® ® :
DPG is complex and
e challenging in its
implementation!
o o




/" mini dpg: A toolkit for FE and DPG discretizations
4

* mini dpg mimics established, high-performance Sierra apps like Structural Dynamics and
Solid Mechanics
= Three-dimensional, MPI-parallel, heterogeneous (GPU-accelerated)

= . .but with in mind

rd
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= Uses open source tools in the Sandia-developed Trilinos library
o Intrepid2: high-order finite elements package

o STK mesh: massively parallel data structures that Sierra is based on
o Kokkos GPU-portable parallelism, batch dense linear algebra, data management

o JIpetra, Amesos2, lfpack2, and Belos sparse, parallel linear solvers
o Also, p-preconditioning strategies, work by Clark Dohrmann et al.

Leveraging Sandia-developed, open-source tools allowed rapid

prototyping and a strong “focus on the math”




Numerical results: Verification
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p-convergence of DPG vs. CGFE formulation

of Poisson’s equation 10E+0T &
. h
o 4x4x1 hex grid e CG e
. . . 1.0E+00 > . —e—DPG L2 error
anyvn gnalytlc solution for testing and TN, - ® -DPG error estimate
verlflcat|20n. .
Vig=f o
o
¢ = sin(mz)sin(my) sin(mwz) £ 1.0E-02
Ie)
— f = =3 sin(nz)sin(ny) sin(wz) 2
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1.0E-05
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/ Numerical results: High-order Helmholtz solutions
Exact solution _T__ - V;
9

/4 : : . Re(pressure) 7.5 . Absorbing
= Custom-developed high-order visualization & output | o ~~ Boundary

= Strategy: h-adapt “viz” mesh and interpolate to points U}T
based on desired error X

= Example: 2D acoustic duct (solved in 3D)
1 element per wavelength

p=6 CGFE Re(pressure) p=5 DPG Re(pressure)
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" Numerical results: Low-order Helmholtz solutions
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/ Absorbing
Bound
= Have we adequately addressed the dreaded eunaary
pollution effect?
= | ow-order CGFE, DPG vs.
high-order reference solution
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Numerical results: Performance in practice

Memory usage in DPG is a concern...

= Up to 2 orders of magnitude higher cost/memory use than FE
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—e—(CG MPI + OpenMP - @ -=DPG MPI + OpenMP
—e—CG MPI + CUDA - & -DPG MPI + CUDA

MPI1 + OpenMP: 1 MPI rank x 8 threads per rank
MPI + CUDA: 1 MPI rank + 1 Nvidia Volta GPU
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...how do we
mitigate this?
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Discretizations based on Trilinos/Intrepid2
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= Example: Discretizing Poisson’s equation
= Intrepid2-based assembly of PDE terms is simple for continuous Galerkin...

intrepid2 basis::Basis hex create p hierarchical hex basis("

auto fs intrepid2 basis::FunctionSpace::create(iface, hex, hexNodes, hexNodeGids);

auto transformDShape fs->compute transformed derivatives();

fs->compute weighted integral(stiffness, transformDShape, transformDShape);
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= Example: Discretizing Poisson’s equation
= DPG discretizations incur

= |ntroduce

Multiple bases

Function spaces
corresponding to trace and
element spaces

of function spaces and bases

BasisCollection b;
plInteg 2
.add basis (Basis ("
.add basis (Basis ("
.add basis (Basis ("
( (
( (

porderTest;

.add basis (Basis ("

.add basis (Basis ("

FunctionSpaceCollection fc(cellCoords,
fc.add function space instance ("v", "
fc.add function space instance ("g",

fc.add function space instance (" e
fc.add function space instance (" e

R

fc.add trace function space instance ("

add trace function space instance ("

Discretizations based on Trilinos/Intrepid2

pInteg), false);
", porderTest, plnteg), false);
1, pInteg), true);
pInteg), false);
pInteg), false);

", porderTest,

, porder
", porder,
", porder,

cellVertexGids, bases);




Discretizations based on Trilinos/Intrepid2
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= Room for improvement: Return values, handling array sizes, avoiding excess memory use and

repeat allocations

—

auto transformShapeFluxCgHdiv fsFluxCgHdiv->compute transformed values ();

Each allocates a Kokkos
-based multi-dimensional
array—convenient for
auto sizing

auto hexFacePoints fsFluxCgHdiv->get integration rule () .points;

auto psiHatDotN compute values dotted with normals (transformShapeFluxCgHdiv,

=  Memory overhead due to arrays
= Strategies for array allocation and reuse?
= Opportunities for more C++ expression templates?

auto hexFaceNormals hex.element face normals (elemCoords, hexFacePoints, iface);

hexFaceNormals) ;
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Room for improvement: Opportunities to exploit parallel asynchrony to maximize concurrency

Discretizations based on Trilinos/Intrepid2

Operations on non-

overlapping arrays could be
asynchronous and non-

blocking

fsHvol->compute weighted integral(stiffPhiQ, transformShapeHvol, transformDerivHdiv, -1.0)
fsHvol->compute weighted integral(stiffPsiQ, transformShapeHvolVec, transformShapeHdiv, 1.0);
fsHvol->compute weighted integral(stiffPsiV, transformShapeHvolVec, transformDerivHgrad, -1.0);

’

( iface 0; iface hex.num faces(); iface)

fsTraceCgHgrad->compute weighted integral(stiffPhiHatQ, transformShapeTraceCgHgrad, gDotN);
fsFluxCgHdiv->compute weighted integral(stiffPsiHatNV, psiHatDotN, transformShapeHgradOnFace) ;

}
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/ Performance mitigation: Matrix-free and lightweight preconditioners

Computational cost and memory use grow exponentially in high-order numerical methods

Ae
A%

* Avoid allocating large matrices
* Use novel solver preconditioning strategies

Storage > 2 MB

8 E oz 3 s ¥ .

A601E

High-order system =2 low-
order preconditioner

Simple plate problem

 1x1x0.04

« Static load, elastic material

* 5000 uniform hexahedral elements
* Known analytic solution:

Matrix-free solution

(p=3, 159,067 degrees of freedom)
CH LK) Eaid i

u, = sin(207z) sin(207y) sin(2572)

Uy =0
u, =0
e TREE BT TR T ST TR PR TR ST T TR
il lnle -r.l._’ __.I_-. :_.- O e E%%?g? el TR CER P cl i
Work by C. Dohrmann et al. X-displacement Y-displacement

_DapY

B383e-04
4.410e-04
4.377e-05

-5.636e-04
-T.506e-04
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Computational cost and memory usage are drastically
reduced relative to traditional code implementations

Performance mitigation: Matrix-free and lightweight preconditioners

Minutes
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Work by C. Dohrmann et al.
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/" Takeaways and future prospects
/i

= Leveraging Trilinos packages enables high-order, advanced discretizations of PDEs of interest
= More general than expected thanks to flexibility in Intrepid2

= Elastodynamics implementation pending

= Threading and GPU acceleration in Intrepid2 discretization and Kokkos batched linear algebra
prove valuable at higher polynomial orders
=  Work to do to prove performance on realistic problems

= Memory high-water mark, usability, and performance require
= Matrix-free computations and efficient preconditioners

= Avoid repeated memory allocations...especially on GPUs
= Asynchronous, nonblocking kernels are essential to maximize concurrency
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