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Accurate modeling and simulation at ultra-high frequencies (UHF)

• The goal:  Predict the response of barrier materials to coupled 
multi-physics phenomena.  Our focus?  Mechanical wave 
propagation.

• Who cares:  DoD, DoE, engineers, designers, and analysts
• Our team’s objective:  Develop novel simulation approaches to 

overcome UHF limitations
• Impacts:  

• Rapid materials discovery
• Multi-physics simulations

• Why SNL: Leaders in engineering, ModSim codes, computing 
capability
• Sierra: mature, massively parallel simulation codes
• Trilinos: scalable numerical algorithms
• HPC: state-of-the-art heterogeneous computing platforms
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Modeling high-frequency wave propagation

Helmholtz equation

Boundary conditionsWavenumber:

Absorbing BC

0.5 m13.6 m

Absorbing BC

Example: Semi-infinite duct

Rouse, Walsh, ASA 2019
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Modeling high-frequency wave propagation

 Excitation frequency: 20 Hz
 16 eight-node hexahedral elements per wavelength

 Analytical solution: 

0.5 m13.6 m

Absorbing BC

L2 relative error = 1.9 % 

Percent error at end = 2.9 % 

Rouse, Walsh, ASA 2019
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Modeling high-frequency wave propagation

 Excitation frequency: 100 Hz
 Same 16 eight-node hexahedral elements per wavelength

”Pollution error” creeps in at higher frequencies

L2 relative error = 8.9 % 

Error at end = 15.5 % 

1.5 Pa

0.5 m13.6 m

Absorbing BC

Rouse, Walsh, ASA 2019
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Pollution error in high-frequency problems

 Relative error for classical finite element solution to the Helmholtz equation:
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Interpolation error: how well shape 
functions approximate the solution

‘Pollution effect*’: Accumulation of 
error over the length of the 
structure

Element size:  h
Polynomial order:  p
Structure length:  L

*Babuska & Sauter, 1997

Addressing pollution is the key to achieving accuracy at UHF



Addressing pollution in high-frequency problems

 Brute force! Domain decomposition, massively parallel continuous Galerkin finite elements (CGFE)
 Pushed as far as possible with classical finite elements and traditional element formulations
 Sierra Mechanics implementation is the state of the art!

 Higher-order CGFE
 Going beyond quadratic approximations with p-elements drastically improves efficiency
 Enriched methods

 Others in the literature…

 One that stands out: Discontinuous Petrov-Galerkin
 Developed by Prof. Demkowicz at UT Austin
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Discontinuous Petrov-Galerkin (DPG) method

Like classical finite elements, but…
Trial functions are continuous, test functions are discontinuous
oCompute optimal test functions on the fly
oBuilt-in error indicator

 Ultraweak formulation
oPositive definite matrices

Pollution is diffusive rather than dispersive
oPollution free in 1D

Unconditionally stable
oAllows for hp-adaptivity

CGFE DPG

L. Demkowicz and J. Gopalakrishnan. ICES REPORT 15-20, The University of Texas at Austin, 2015.
J. Zitelli and I. Muga and L. Demkowicz and J. Gopalakrishnan and D. Pardo and V. M. Calo. Journal of Computational 

Physics, 230(7): 2406-2432, 2011.
S. Petrides. PhD Dissertation, The University of Texas at Austin, 2019.
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Discontinuous Petrov-Galerkin discretizations

 Simplest case: Poisson’s equation

CGFE formulation:
DPG ‘ultraweak’ formulation:

FluxTrace For each 
element k

Expressed for
entire domain

. . .. . .
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DPG is complex and 
challenging in its 
implementation!



mini_dpg: A toolkit for FE and DPG discretizations

 mini_dpg mimics established, high-performance Sierra apps like Structural Dynamics and 
Solid Mechanics
 Three-dimensional, MPI-parallel, heterogeneous (GPU-accelerated)
 …but with advanced discretizations in mind

 Uses open source tools in the Sandia-developed Trilinos library
o Intrepid2: high-order finite elements package
o STK mesh: massively parallel data structures that Sierra is based on
o Kokkos GPU-portable parallelism, batch dense linear algebra, data management
o Tpetra, Amesos2, Ifpack2, and Belos sparse, parallel linear solvers
o Also, p-preconditioning strategies, work by Clark Dohrmann et al.
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Leveraging Sandia-developed, open-source tools allowed rapid 
prototyping and a strong “focus on the math”



Numerical results: Verification

p-convergence of DPG vs. CGFE formulation
of Poisson’s equation
o 4x4x1 hex grid

Known analytic solution for testing and
verification:

polynomial order
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Numerical results: High-order Helmholtz solutions

 Custom-developed high-order visualization & output
 Strategy: h-adapt “viz” mesh and interpolate to points 

based on desired error

 Example: 2D acoustic duct (solved in 3D)
1 element per wavelength

Absorbing 
Boundary

p=6 CGFE Re(pressure) p=5 DPG Re(pressure)
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Exact solution 
Re(pressure)



Numerical results: Low-order Helmholtz solutions

 Have we adequately addressed the dreaded
pollution effect?
 Low-order CGFE, DPG vs.

high-order reference solution

Absorbing 
Boundary
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DPG tracks the 
expected solution!

CGFE shows large 
phase difference
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Numerical results: Performance in practice
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 Memory usage in DPG is a concern… 
 Up to 2 orders of magnitude higher cost/memory use than FE

MPI + OpenMP: 1 MPI rank x 8 threads per rank
MPI + CUDA: 1 MPI rank + 1 Nvidia Volta GPU

polynomial order
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…how do we 
mitigate this?



Discretizations based on Trilinos/Intrepid2
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 Example: Discretizing Poisson’s equation
 Intrepid2-based assembly of PDE terms is simple for continuous Galerkin…

intrepid2_basis::Basis hex = create_p_hierarchical_hex_basis("hierarchical", "hgrad", 1);

auto fs = intrepid2_basis::FunctionSpace::create(iface, hex, hexNodes, hexNodeGids);

auto transformDShape = fs->compute_transformed_derivatives();

// stiffness
fs->compute_weighted_integral(stiffness, transformDShape, transformDShape);



Discretizations based on Trilinos/Intrepid2
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 Example: Discretizing Poisson’s equation
 DPG discretizations incur more complexity and bookkeeping
 Introduce collections of function spaces and bases

BasisCollection b;
short pInteg = 2 * porderTest;
b.add_basis(Basis("hex8", "dg_hierarchical", "hgrad", porderTest, pInteg), false);
b.add_basis(Basis("hex8", "dg_hierarchical", "hdiv", porderTest, pInteg), false);
b.add_basis(Basis("hex8", "hierarchical", "l2", porder - 1, pInteg), true);
b.add_basis(Basis("hex8", "hierarchical", "hdiv", porder, pInteg), false);
b.add_basis(Basis("hex8", "hierarchical", "hgrad", porder, pInteg), false);

FunctionSpaceCollection fc(cellCoords, cellVertexGids, bases);
fc.add_function_space_instance("v", "dg_hierarchical", "hgrad", 1);
fc.add_function_space_instance("q", "dg_hierarchical", "hdiv", 1);
fc.add_function_space_instance("phi", "hierarchical", "l2", 1);
fc.add_function_space_instance("psi", "hierarchical", "l2", 3);
fc.add_trace_function_space_instance("phiHat", "hierarchical", "hgrad", 1);
fc.add_trace_function_space_instance("psiHatN", "hierarchical", "hdiv", 1);

Multiple bases

Function spaces 
corresponding to trace and 
element spaces



Discretizations based on Trilinos/Intrepid2
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 Room for improvement: Return values, handling array sizes, avoiding excess memory use and 
repeat allocations

 Memory overhead due to arrays
 Strategies for array allocation and reuse?
 Opportunities for more C++ expression templates?

auto transformShapeFluxCgHdiv = fsFluxCgHdiv->compute_transformed_values();

auto hexFacePoints = fsFluxCgHdiv->get_integration_rule().points;
auto hexFaceNormals = hex.element_face_normals(elemCoords, hexFacePoints, iface);

// q dot n = transformShapeHDiv . cellSideNormals
auto psiHatDotN = compute_values_dotted_with_normals(transformShapeFluxCgHdiv, hexFaceNormals);

Each allocates a Kokkos
-based multi-dimensional 
array—convenient for 
auto sizing



Discretizations based on Trilinos/Intrepid2
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 Room for improvement: Opportunities to exploit parallel asynchrony to maximize concurrency

// B
fsHvol->compute_weighted_integral(stiffPhiQ, transformShapeHvol, transformDerivHdiv, -1.0);
fsHvol->compute_weighted_integral(stiffPsiQ, transformShapeHvolVec, transformShapeHdiv, -1.0);
fsHvol->compute_weighted_integral(stiffPsiV, transformShapeHvolVec, transformDerivHgrad, -1.0);

for (unsigned iface = 0; iface < hex.num_faces(); ++iface)
{
  ...

  // Bhat
  fsTraceCgHgrad->compute_weighted_integral(stiffPhiHatQ, transformShapeTraceCgHgrad, qDotN);
  fsFluxCgHdiv->compute_weighted_integral(stiffPsiHatNV, psiHatDotN, transformShapeHgradOnFace);
}

Operations on non-
overlapping arrays could be 
asynchronous and non-
blocking



Performance mitigation: Matrix-free and lightweight preconditioners
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• Computational cost and memory use grow exponentially in high-order numerical methods
• Avoid allocating large matrices
• Use novel solver preconditioning strategies

Simple plate problem
• 1 x 1 x 0.04
• Static load, elastic material
• 5000 uniform hexahedral elements
• Known analytic solution:

Y-displacementX-displacement

Matrix-free solution
(p=3, 159,067 degrees of freedom)

Work by C. Dohrmann et al.

Storage > 2 MB

High-order system  low-
order preconditioner



Performance mitigation: Matrix-free and lightweight preconditioners
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Computational cost and memory usage are drastically 
reduced relative to traditional code implementations

Polynomial Order p Polynomial Order p

Compute Time Memory Usage
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Sierra Structural 
Dynamics (massively 
parallel FE)

Work by C. Dohrmann et al.

Over 2x faster! 5x smaller memory 
footprint!



Takeaways and future prospects

21

 Leveraging Trilinos packages enables high-order, advanced discretizations of PDEs of interest
 More general than expected thanks to flexibility in Intrepid2
 Elastodynamics implementation pending

 Threading and GPU acceleration in Intrepid2 discretization and Kokkos batched linear algebra 
prove valuable at higher polynomial orders
 Work to do to prove performance on realistic problems

 Memory high-water mark, usability, and performance require mitigation for tractability
 Matrix-free computations and efficient preconditioners
 Avoid repeated memory allocations…especially on GPUs
 Asynchronous, nonblocking kernels are essential to maximize concurrency
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