

Exceptional service in the national interest

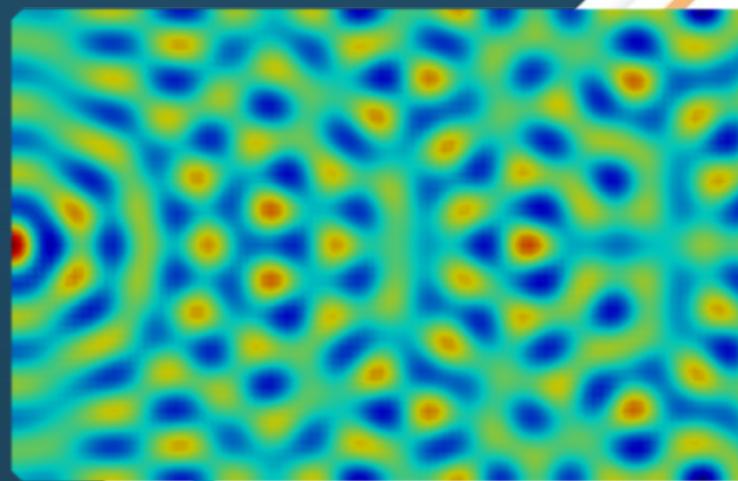
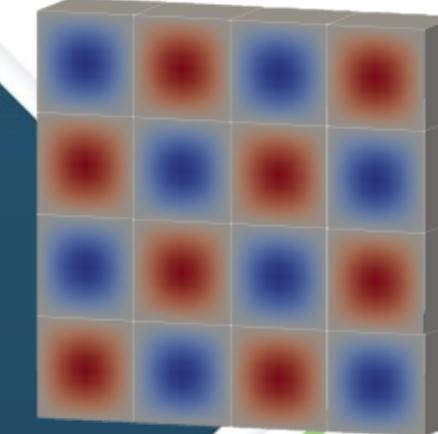
Discretizations of high-frequency wave propagation problems on next-generation computing architectures

Julia A. Plews, Gregory Bunting, Jerry Rouse,
Clark Dohrmann

Sandia National Laboratories, Albuquerque, New Mexico, USA

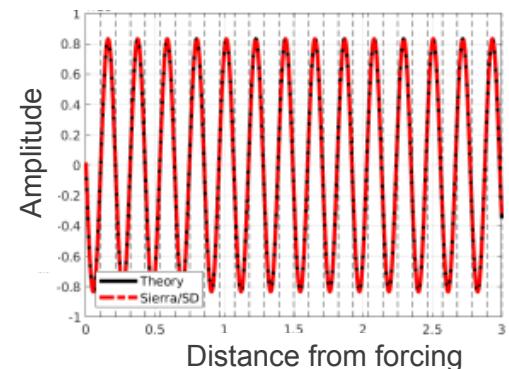
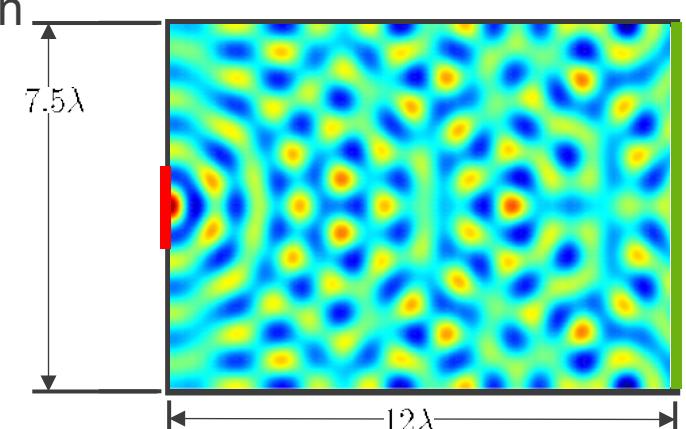
WCCM-APCOM Yokohama 2022

July 31 to August 5, 2022

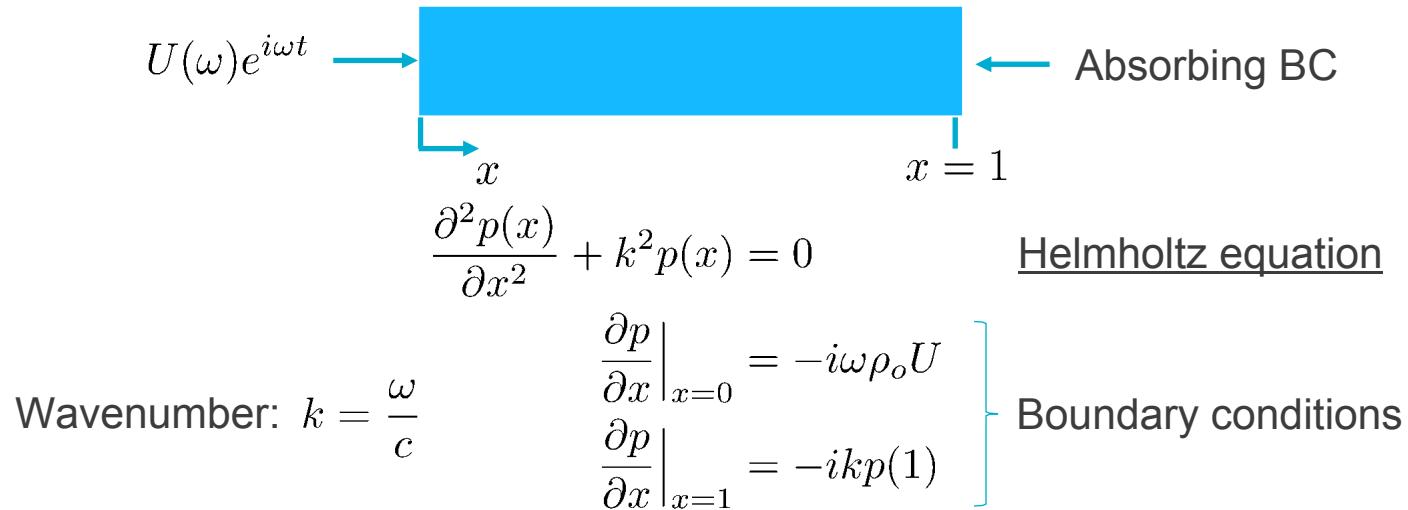
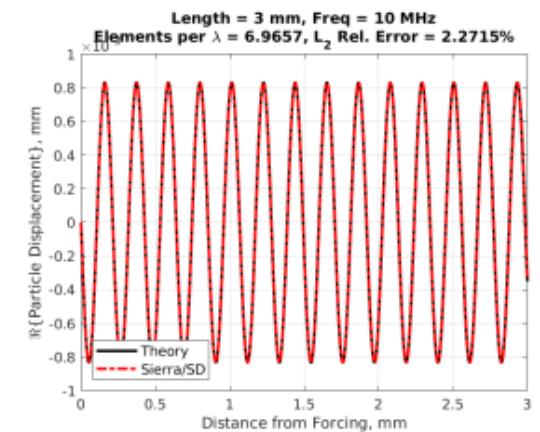


Accurate modeling and simulation at ultra-high frequencies (UHF)

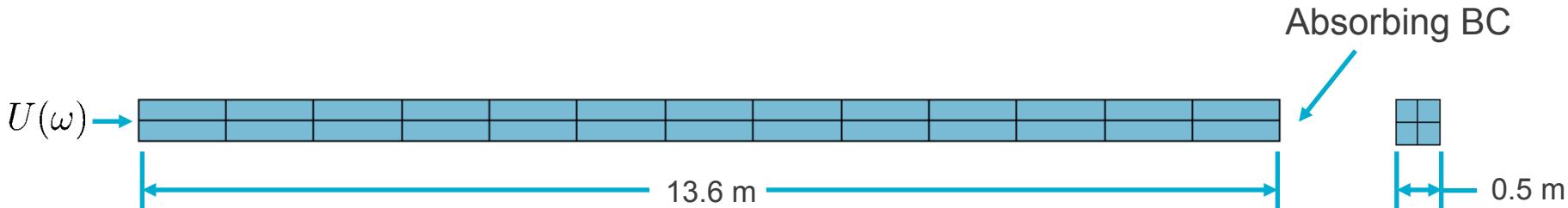
- **The goal:** *Predict the response of barrier materials to coupled multi-physics phenomena. Our focus? Mechanical wave propagation.*
- **Who cares:** DoD, DoE, engineers, designers, and analysts
- **Our team's objective:** Develop novel simulation approaches to overcome UHF limitations
- **Impacts:**
 - Rapid materials discovery
 - Multi-physics simulations
- **Why SNL:** Leaders in engineering, ModSim codes, computing capability
 - Sierra: mature, massively parallel simulation codes
 - Trilinos: scalable numerical algorithms
 - HPC: state-of-the-art heterogeneous computing platforms



Modeling high-frequency wave propagation

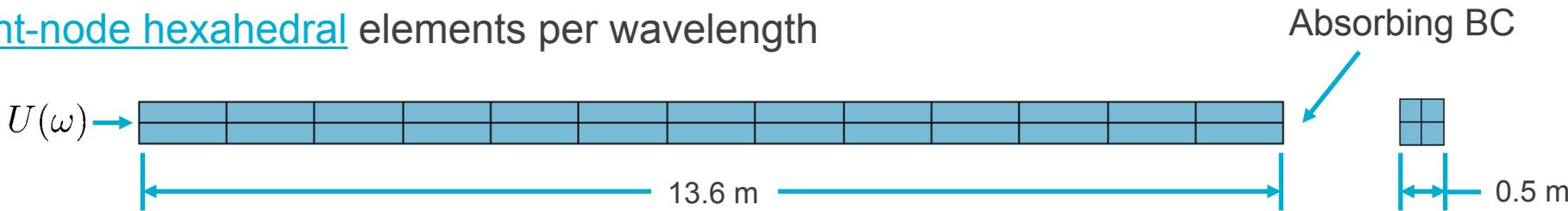


Example: Semi-infinite duct



Modeling high-frequency wave propagation

- Excitation frequency: 20 Hz
- 16 eight-node hexahedral elements per wavelength

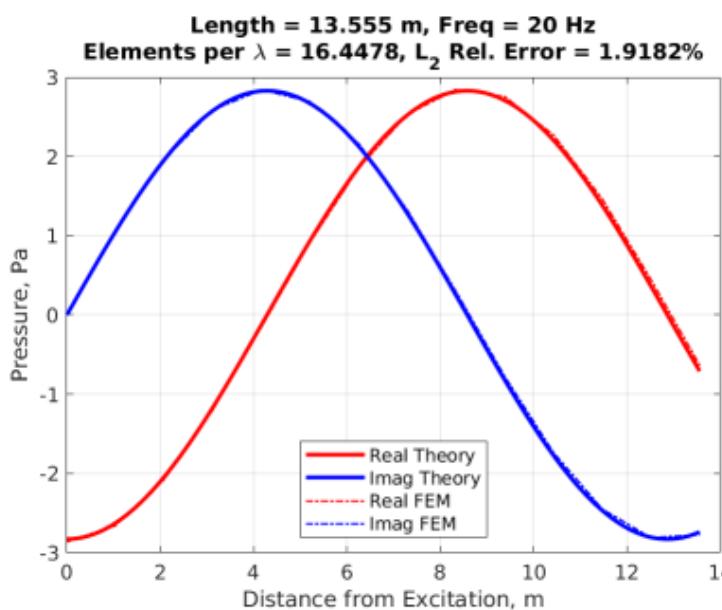


- Analytical solution: $p(z) = \rho_o c U(\omega) e^{-ikz}$

L_2 relative error = 1.9 %

$$\tilde{e}_2 = \frac{\|p - p_h\|_2}{\|p\|_2}$$

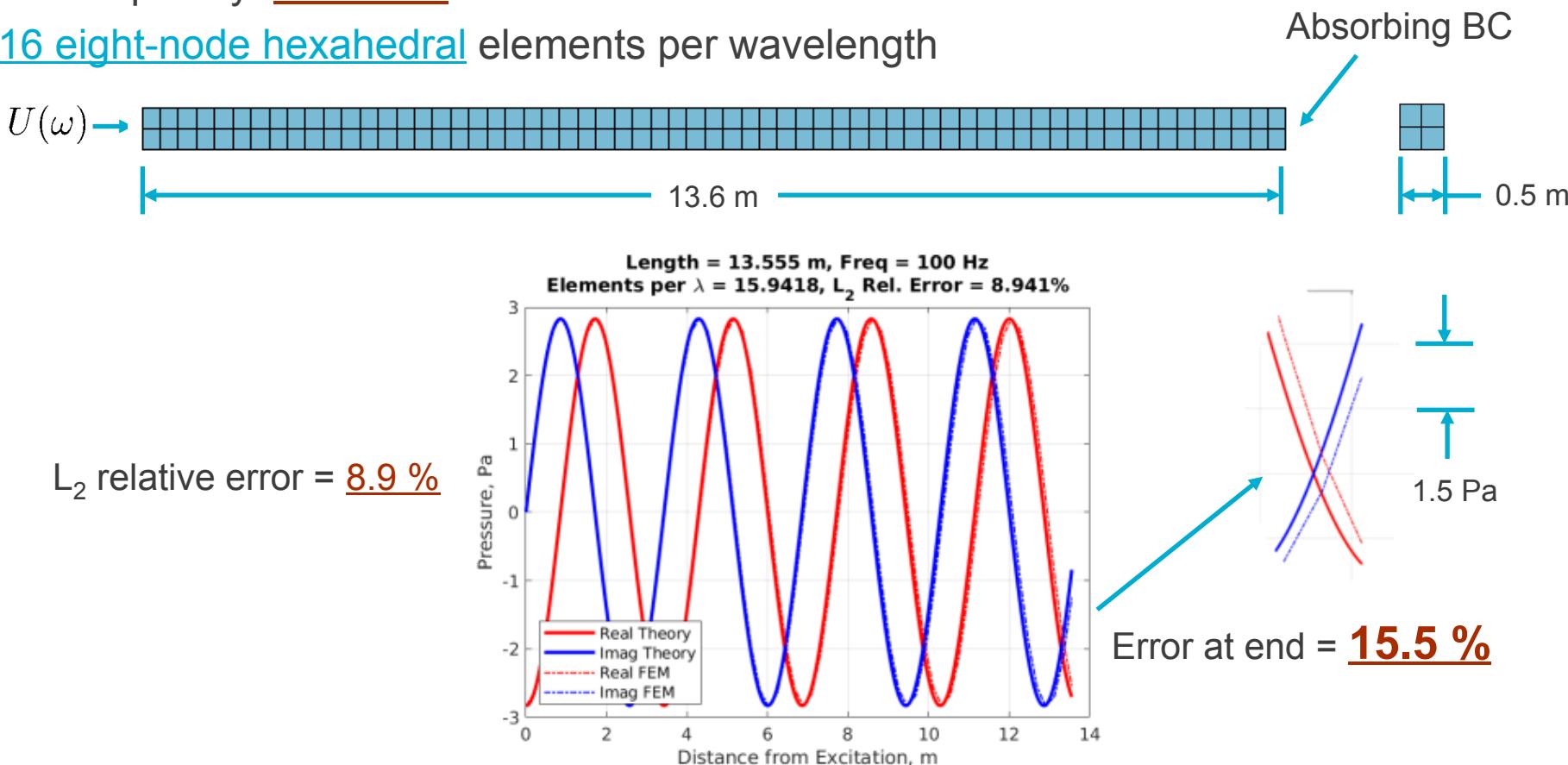
$$\|u\|_2 = \left[\int_0^L |u(z)|^2 dz \right]^{1/2}$$



Percent error at end = 2.9 %

Modeling high-frequency wave propagation

- Excitation frequency: **100 Hz**
- Same 16 eight-node hexahedral elements per wavelength



Pollution error in high-frequency problems

- Relative error for classical finite element solution to the Helmholtz equation:

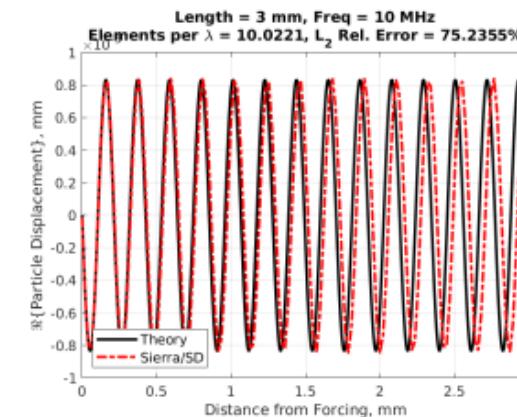
Element size: h
Polynomial order: p
Structure length: L

$$\frac{|u - u_h|_1}{|u|_1} \leq C_1 \left(\frac{kh}{p} \right)^p + C_2 L k \left(\frac{kh}{p} \right)^{2p}, \quad kh < 1$$

Interpolation error: how well shape functions approximate the solution

**Babuska & Sauter, 1997*

‘Pollution effect’*: Accumulation of error over the length of the structure



Addressing pollution is the key to achieving accuracy at UHF

Addressing pollution in high-frequency problems

- Brute force! Domain decomposition, massively parallel **continuous Galerkin** finite elements (CGFE)
 - Pushed as far as possible with classical finite elements and traditional element formulations
 - Sierra Mechanics implementation is the state of the art!
- Higher-order CGFE
 - Going beyond quadratic approximations with *p*-elements drastically improves efficiency
 - Enriched methods
- Others in the literature...
- One that stands out: Discontinuous Petrov-Galerkin
 - Developed by Prof. Demkowicz at UT Austin

Discontinuous Petrov-Galerkin (DPG) method

Like classical finite elements, but...

Trial functions are continuous, test functions are discontinuous

- Compute optimal test functions on the fly
- Built-in error indicator

Ultraweak formulation

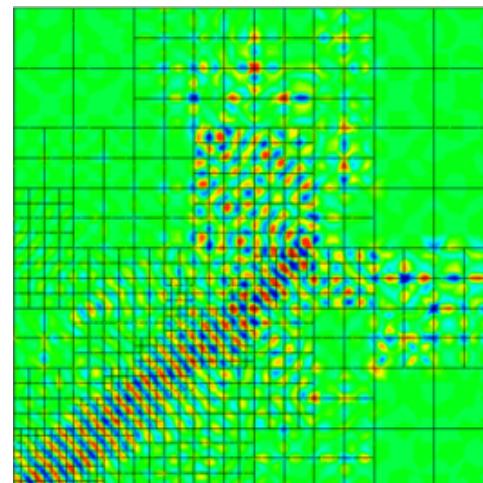
- Positive definite matrices

Pollution is diffusive rather than dispersive

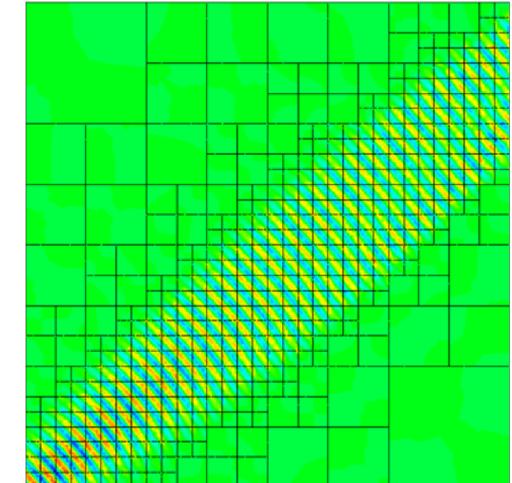
- Pollution free in 1D

Unconditionally stable

- Allows for hp-adaptivity



CGFE



DPG

L. Demkowicz and J. Gopalakrishnan. *ICES REPORT 15-20, The University of Texas at Austin*, 2015.

J. Zitelli and I. Muga and L. Demkowicz and J. Gopalakrishnan and D. Pardo and V. M. Calo. *Journal of Computational Physics*, 230(7): 2406-2432, 2011.

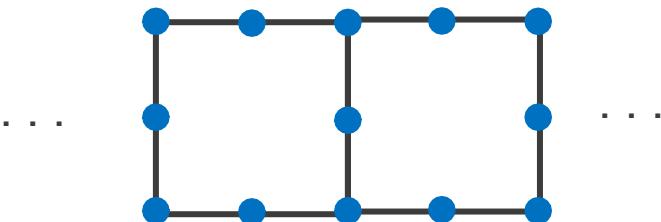
S. Petrides. *PhD Dissertation, The University of Texas at Austin*, 2019.

Discontinuous Petrov-Galerkin discretizations

- Simplest case: Poisson's equation

$$-\int_{\Omega} \vec{\nabla} \phi \cdot \vec{\nabla} v \, d\Omega + \int_{\Gamma} v (\vec{\nabla} \phi \cdot \hat{n}) \, d\Gamma = \int_{\Omega} f v \, d\Omega$$

Expressed for entire domain



DPG is complex and challenging in its implementation!

$$\nabla^2 \phi = f$$

$$\vec{\psi} = \vec{\nabla} \phi$$

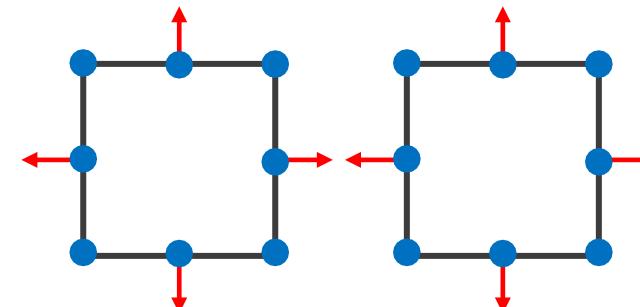
DPG 'ultraweak' formulation:

$$-\int_{\Omega_k} \phi (\vec{\nabla} \cdot \vec{q}) \, d\Omega_k - \int_{\Omega_k} \vec{\psi} \cdot \vec{q} \, d\Omega_k + \int_{\Gamma_k} \hat{\phi} (\vec{q} \cdot \hat{n}) \, d\Gamma_k + \int_{\Gamma_k} \hat{\psi}_n v \, d\Gamma_k = \int_{\Omega_k} f v \, d\Omega_k$$

Trace

Flux

For each element k



mini_dpg: A toolkit for FE and DPG discretizations

- mini_dpg mimics established, high-performance Sierra apps like **Structural Dynamics** and **Solid Mechanics**
 - Three-dimensional, MPI-parallel, heterogeneous (GPU-accelerated)
 - ...but with **advanced discretizations** in mind
- Uses open source tools in the Sandia-developed **Trilinos library**
 - [Intrepid2](#): **high-order finite elements** package
 - [STK](#) mesh: **massively parallel data structures** that Sierra is based on
 - [Kokkos](#) **GPU-portable** parallelism, batch dense linear algebra, data management
 - [Tpetra](#), [Amesos2](#), [Ifpack2](#), and [Belos](#) **sparse, parallel linear solvers**
 - Also, p -preconditioning strategies, work by Clark Dohrmann et al.

Leveraging Sandia-developed, open-source tools allowed rapid prototyping and a strong “focus on the math”

Numerical results: Verification

p-convergence of DPG vs. CGFE formulation
of Poisson's equation

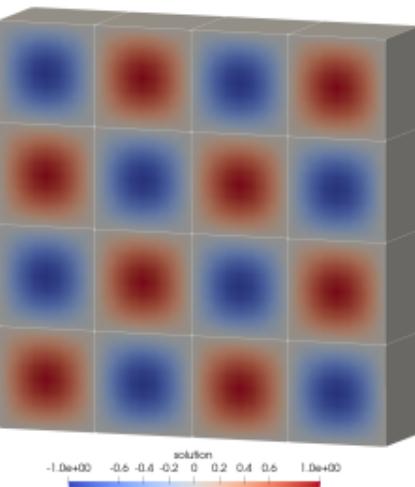
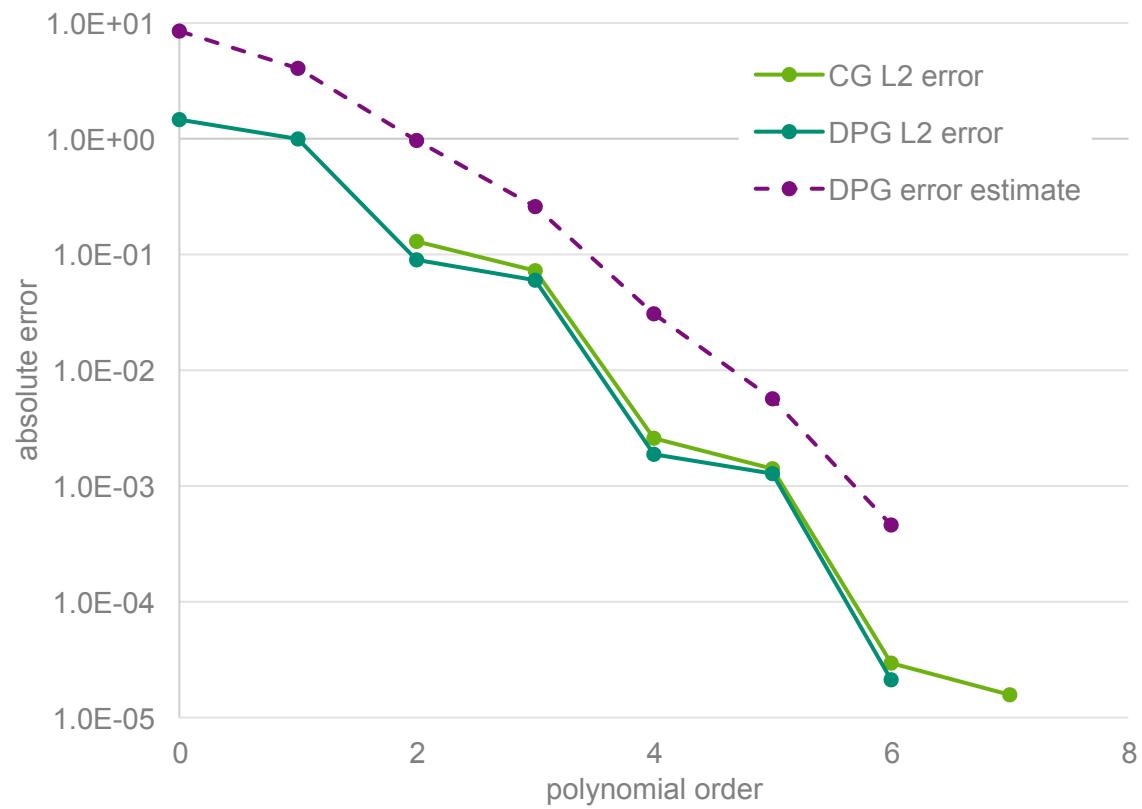
○ 4x4x1 hex grid

Known analytic solution for testing and
verification:

$$\nabla^2 \phi = f$$

$$\phi = \sin(\pi x) \sin(\pi y) \sin(\pi z)$$

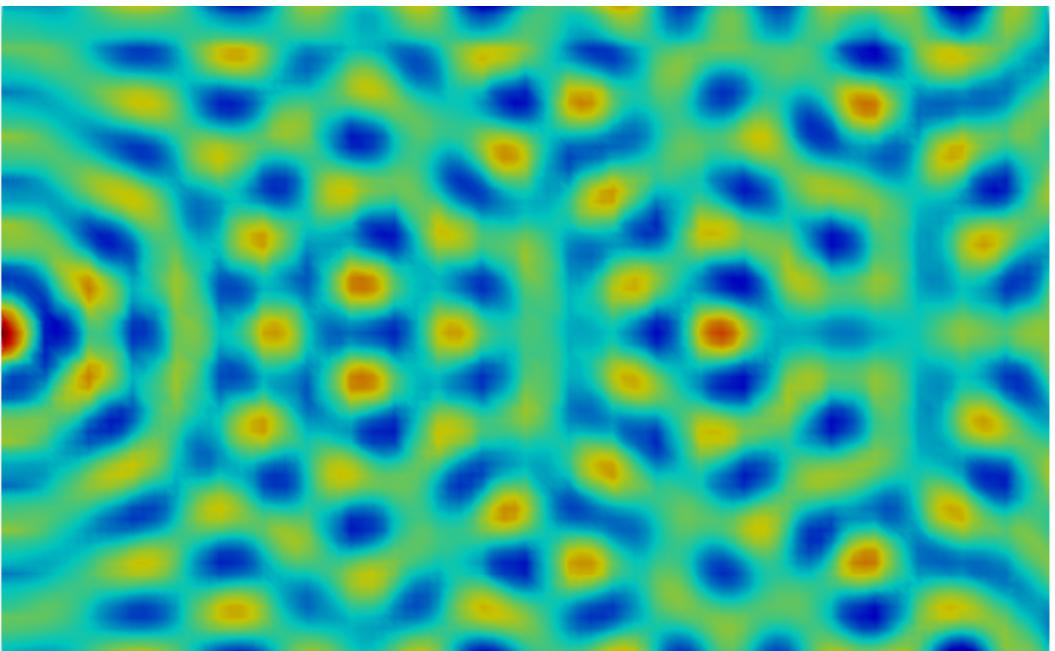
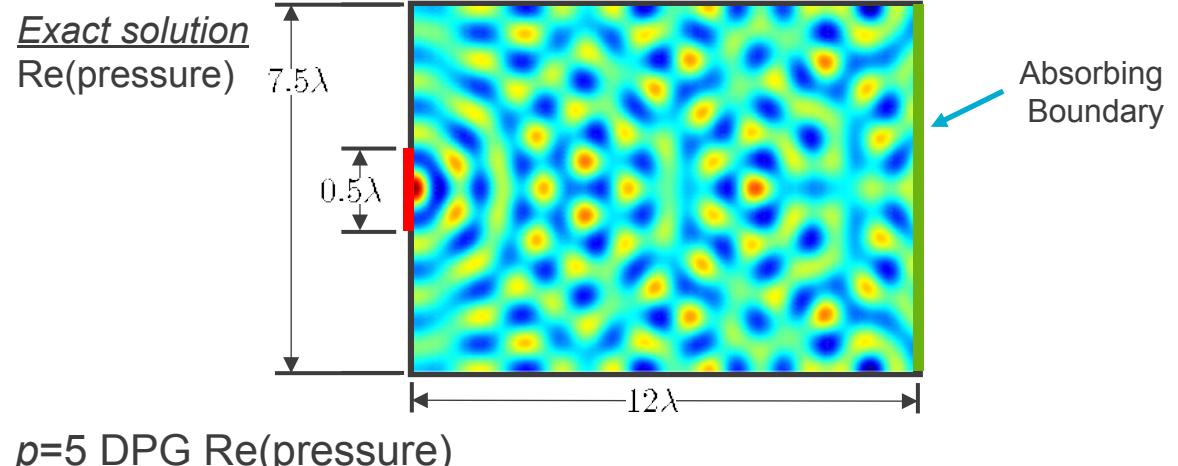
$$\rightarrow f = -3\pi^2 \sin(\pi x) \sin(\pi y) \sin(\pi z)$$



Numerical results: High-order Helmholtz solutions

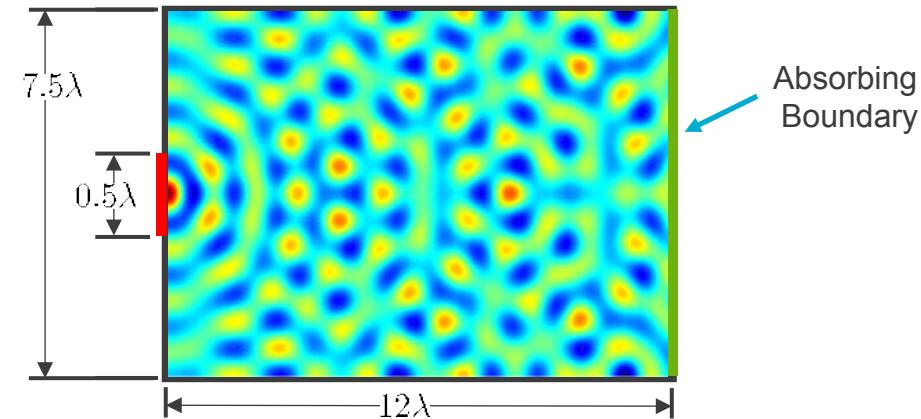
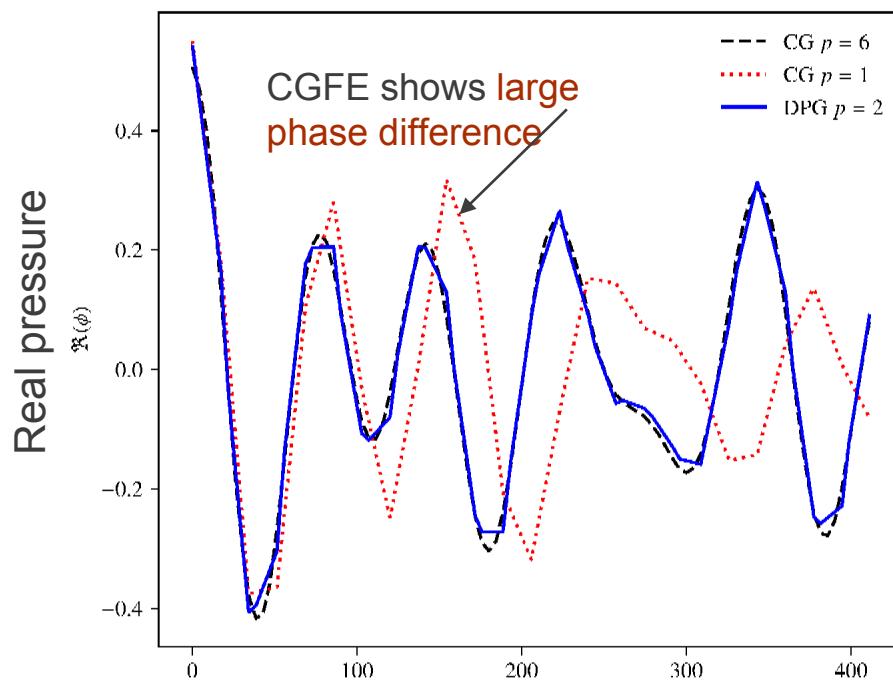
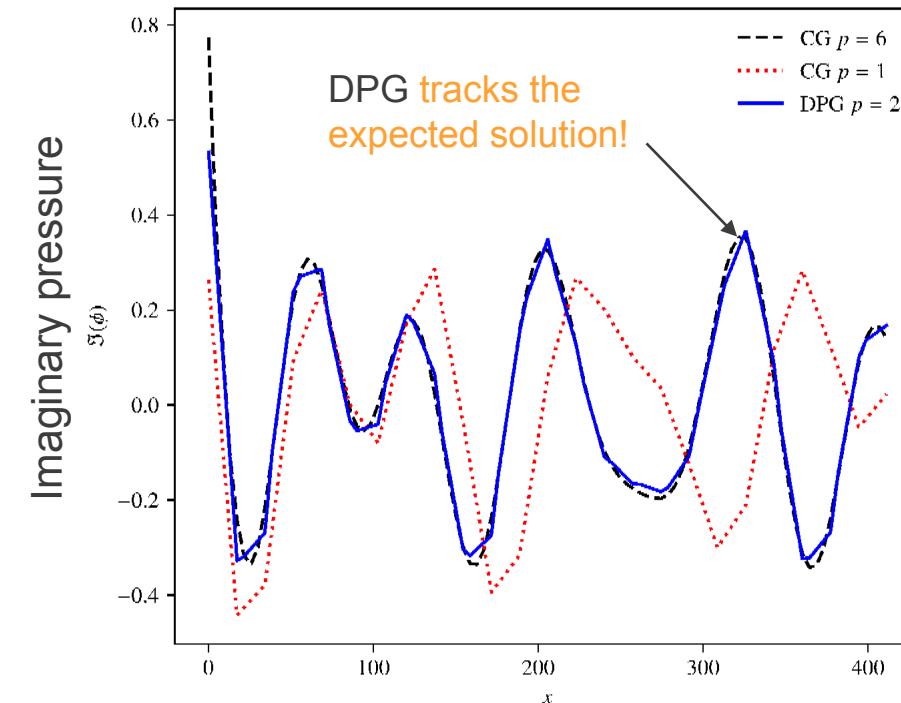
- Custom-developed **high-order visualization & output**
- Strategy: *h*-adapt “viz” mesh and interpolate to points based on desired error
- Example: 2D acoustic duct (solved in 3D)
1 element per wavelength

$p=6$ CGFE Re(pressure)



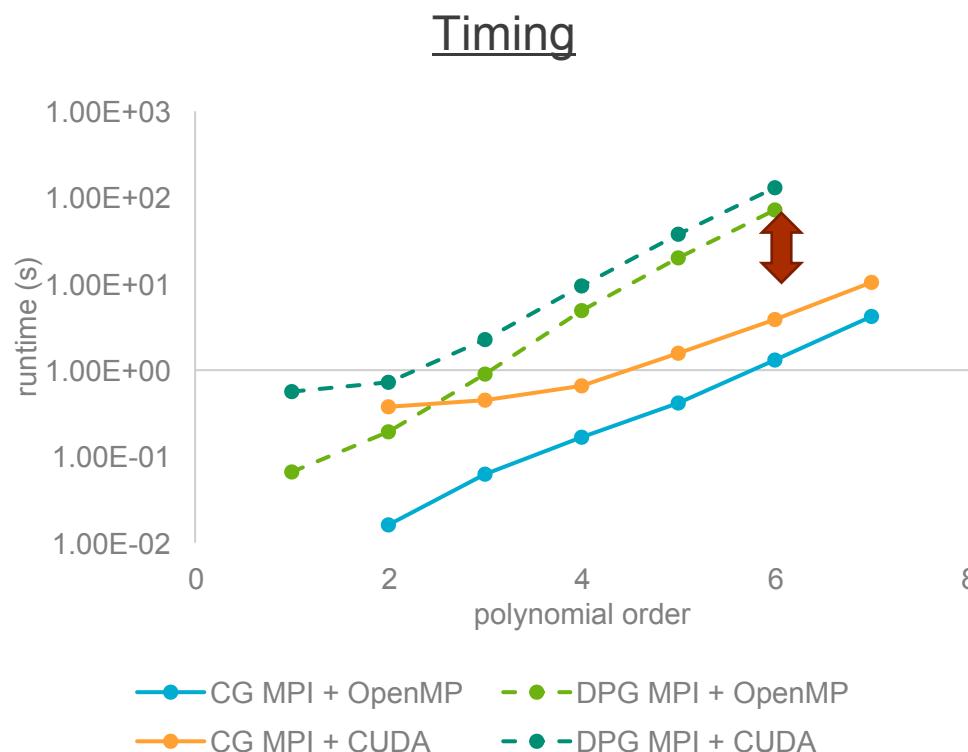
Numerical results: Low-order Helmholtz solutions

- Have we adequately addressed the dreaded pollution effect?
 - Low-order CGFE, DPG vs. high-order reference solution



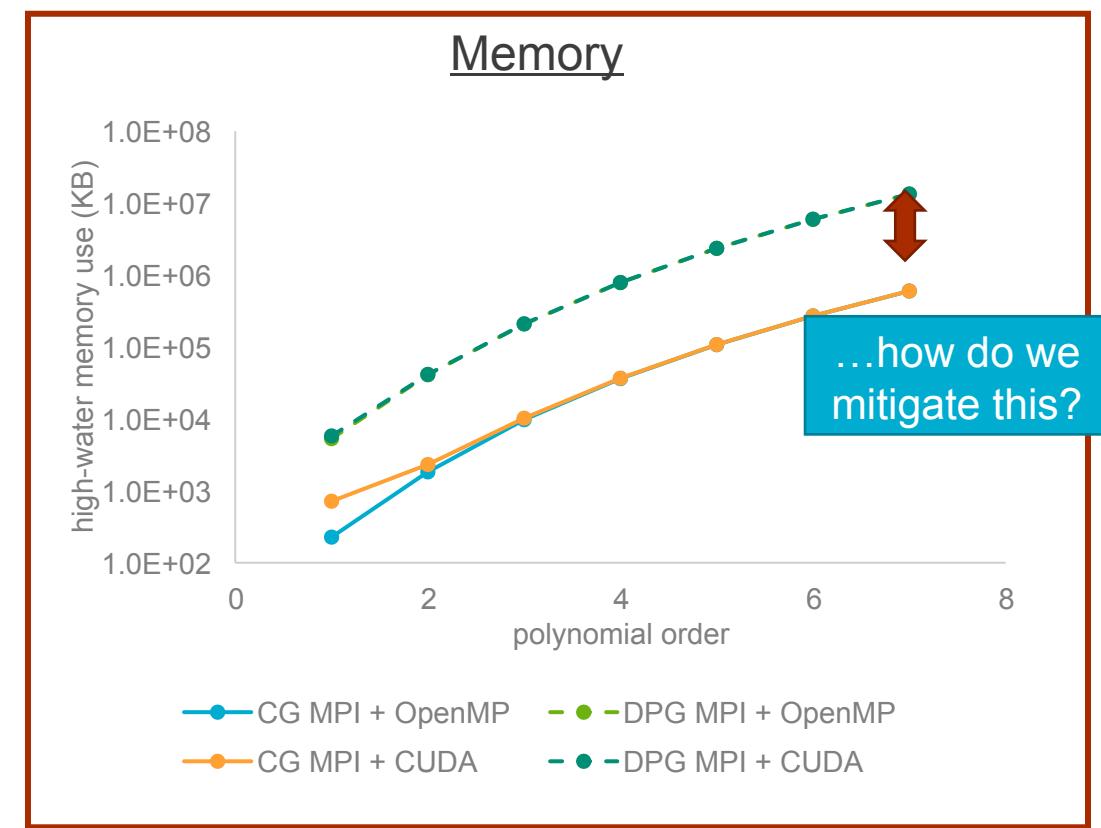
Numerical results: Performance in practice

- Memory usage in DPG is a concern...
 - Up to 2 orders of magnitude higher cost/memory use than FE



MPI + OpenMP: 1 MPI rank x 8 threads per rank

MPI + CUDA: 1 MPI rank + 1 Nvidia Volta GPU



Discretizations based on Trilinos/Intrepid2

- Example: Discretizing Poisson's equation
 - Intrepid2-based assembly of PDE terms is simple for continuous Galerkin...

```
intrepid2_basis::Basis hex = create_p_hierarchical_hex_basis("hierarchical", "hgrad", 1);

auto fs = intrepid2_basis::FunctionSpace::create(iface, hex, hexNodes, hexNodeGids);

auto transformDShape = fs->compute_transformed_derivatives();

// stiffness
fs->compute_weighted_integral(stiffness, transformDShape, transformDShape);
```


Discretizations based on Trilinos/Intrepid2

- Example: Discretizing Poisson's equation
 - DPG discretizations incur more complexity and bookkeeping
 - Introduce collections of function spaces and bases

Multiple bases

Function spaces
corresponding to trace and
element spaces

```
BasisCollection b;
short pInteg = 2 * porderTest;
b.add_basis(Basis("hex8", "dg_hierarchical", "hgrad", porderTest, pInteg), false);
b.add_basis(Basis("hex8", "dg_hierarchical", "hdiv", porderTest, pInteg), false);
b.add_basis(Basis("hex8", "hierarchical", "l2", porder - 1, pInteg), true);
b.add_basis(Basis("hex8", "hierarchical", "hdiv", porder, pInteg), false);
b.add_basis(Basis("hex8", "hierarchical", "hgrad", porder, pInteg), false);

FunctionSpaceCollection fc(cellCoords, cellVertexGids, bases);
fc.add_function_space_instance("v", "dg_hierarchical", "hgrad", 1);
fc.add_function_space_instance("q", "dg_hierarchical", "hdiv", 1);
fc.add_function_space_instance("phi", "hierarchical", "l2", 1);
fc.add_function_space_instance("psi", "hierarchical", "l2", 3);
fc.add_trace_function_space_instance("phiHat", "hierarchical", "hgrad", 1);
fc.add_trace_function_space_instance("psiHatN", "hierarchical", "hdiv", 1);
```

Discretizations based on Trilinos/Intrepid2

- Room for improvement: Return values, handling array sizes, avoiding excess memory use and repeat allocations

Each allocates a Kokkos-based multi-dimensional array—convenient for auto sizing

```
auto transformShapeFluxCgHdiv = fsFluxCgHdiv->compute_transformed_values();  
  
auto hexFacePoints = fsFluxCgHdiv->get_integration_rule().points;  
auto hexFaceNormals = hex.element_face_normals(elemCoords, hexFacePoints, iface);  
  
// q dot n = transformShapeHDiv . cellSideNormals  
auto psiHatDotN = compute_values_dotted_with_normals(transformShapeFluxCgHdiv, hexFaceNormals);
```

- Memory overhead due to arrays
- Strategies for array allocation and reuse?
- Opportunities for more C++ expression templates?

Discretizations based on Trilinos/Intrepid2

- Room for improvement: Opportunities to exploit parallel asynchrony to maximize concurrency

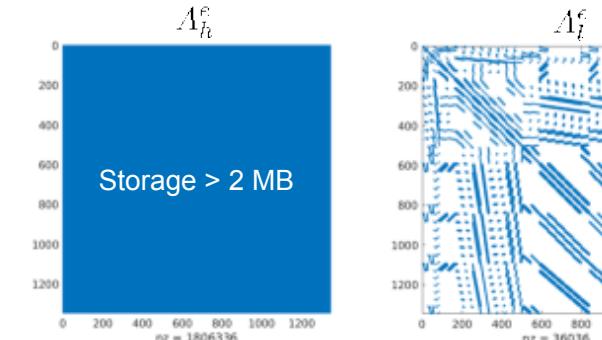
Operations on non-overlapping arrays could be asynchronous and non-blocking

```
// B
fsHvol->compute_weighted_integral(stiffPhiQ, transformShapeHvol, transformDerivHdiv, -1.0);
fsHvol->compute_weighted_integral(stiffPsiQ, transformShapeHvolVec, transformShapeHdiv, -1.0);
fsHvol->compute_weighted_integral(stiffPsiV, transformShapeHvolVec, transformDerivHgrad, -1.0);

for (unsigned iface = 0; iface < hex.num_faces(); ++iface)
{
    ...
    // Bhat
    fsTraceCgHgrad->compute_weighted_integral(stiffPhiHatQ, transformShapeTraceCgHgrad, qDotN);
    fsFluxCgHdiv->compute_weighted_integral(stiffPsiHatNV, psiHatDotN, transformShapeHgradOnFace);
}
```

Performance mitigation: Matrix-free and lightweight preconditioners

- Computational cost and memory use grow exponentially in high-order numerical methods
 - Avoid allocating large matrices
 - Use novel solver preconditioning strategies



Simple plate problem

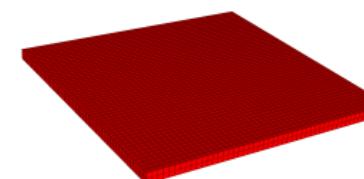
- 1 x 1 x 0.04
- Static load, elastic material
- 5000 uniform hexahedral elements
- Known analytic solution:

$$u_x = \sin(20\pi x) \sin(20\pi y) \sin(25\pi z)$$

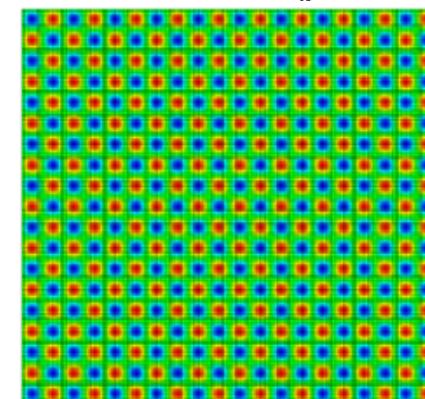
$$u_y = 0$$

$$u_z = 0$$

Work by C. Dohrmann et al.

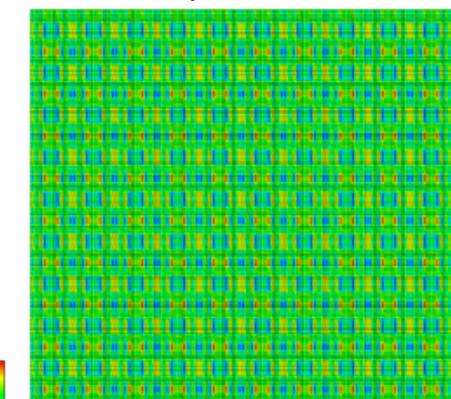


High-order system \rightarrow low-order preconditioner

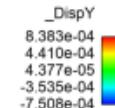


X-displacement

Matrix-free solution
(p=3, 159,067 degrees of freedom)

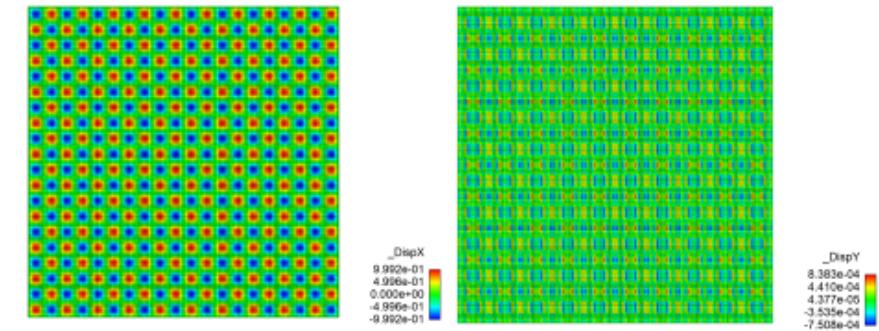
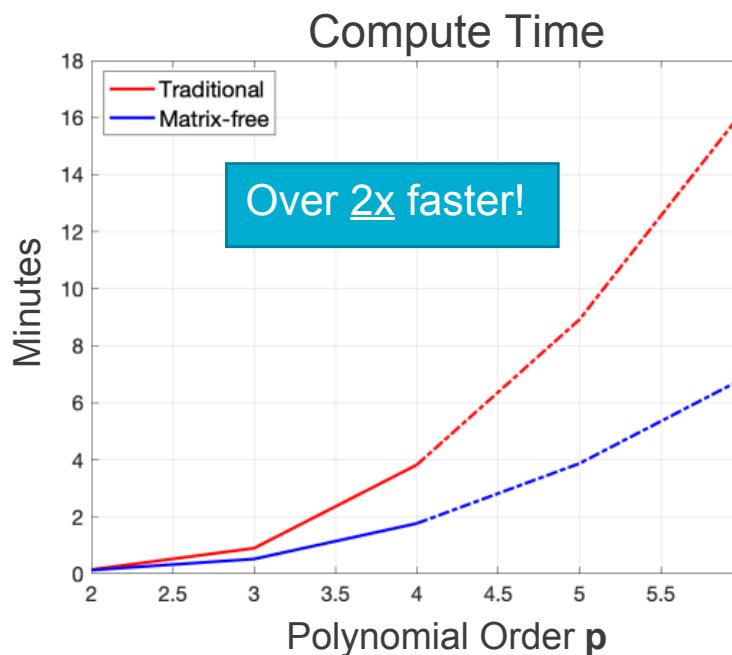
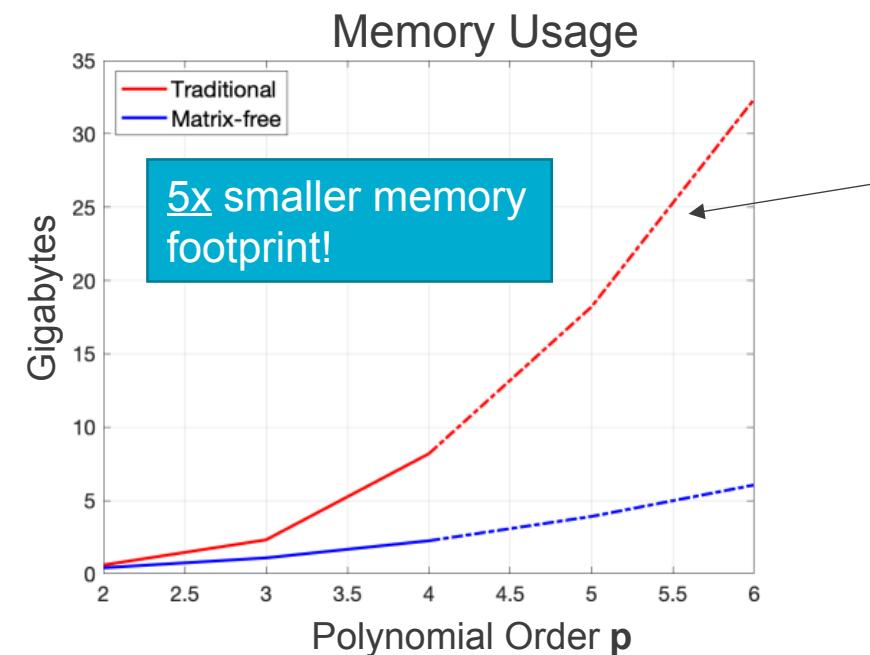


Y-displacement



Performance mitigation: Matrix-free and lightweight preconditioners

Computational cost and memory usage are drastically reduced relative to traditional code implementations



Sierra Structural Dynamics (massively parallel FE)

Takeaways and future prospects

- Leveraging Trilinos packages enables high-order, advanced discretizations of PDEs of interest
 - More general than expected thanks to flexibility in Intrepid2
 - Elastodynamics implementation pending
- Threading and GPU acceleration in Intrepid2 discretization and Kokkos batched linear algebra prove valuable at higher polynomial orders
 - Work to do to prove performance on realistic problems
- Memory high-water mark, usability, and performance require mitigation for tractability
 - Matrix-free computations and efficient preconditioners
 - Avoid repeated memory allocations...especially on GPUs
 - Asynchronous, nonblocking kernels are essential to maximize concurrency

References & acknowledgments

- **Talks & publications**
 - C. Dohrmann: Spectral equivalence of low-order discretizations for high-order $H(\text{curl})$ and $H(\text{div})$ spaces. *SIAM Journal on Scientific Computing*, 43(6):A3992-A4014, 2021.
 - C. Dohrmann et al: Low-order preconditioning for the high-order finite element de Rham complex, submitted to *SIAM Journal on Scientific Computing*.
 - J. Plews: “Developing a GPU-enabled DPG Toolkit: Experiences with Intrepid2,” *Trilinos User Group (TUG) Meeting*, December 2021.
- **Thanks**
 - Computing Research at Sandia (Trilinos User Group, Kokkos Kernels)
 - DPG short course with Prof. Leszek Demkowicz (UT Austin)
 - Lawrence Livermore National Lab (C. Dohrmann)