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Motivation/Goals

We (1441 and 1463) are broadly interested in using ML to accelerate/enhance our ability to perform UQ 
and solve inverse problems.

Can we estimate/assess the uncertainty in predictions made by data-driven models to improve their 
trustworthiness?

Data-driven Foundational Activities  
• Non-hierarchical approaches (DARPA, ASC, LDRD) [Gorodetsky et al., JCP 2020, Gorodetsky et al., 

Comp. Mech 2021]
• Hyperparameter optimization (ASC) [Bomarito et al., SciTech 2022]
• Incorporating non-deterministic models (LDRD, ASC, SciDAC) [Geraci et al., SIAM CSE 2021]
• Heterogeneous input parametrization (LDRD, SciDAC) [Geraci, Eldred, SAND Rep. 2018]

Embedded UQ for ML
• Stochastic inverse problems (ASCR) [Butler et al, SISC 2018]
• Ensembles for stochastic inverse problems (ASCR, ASC) [Wildey et al, SIAM UQ 2022]
• MF Convolutional Neural Networks with embedded error estimation (ASC) [Partin et al., SciTech 2022]
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Multi-Fidelity UQ threads 
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Optimization Under Uncertainty

• Production: manage simulation 
and/or stochastic fidelity

• Emerging:
Derivative-based methods (DARPA SEQUOIA)

• Multigrid optimization (MG/Opt)
• Recursive trust-region model mgmt.: extend 

TRMM to deep hierarchies
Derivative-free methods (DARPA Scramjet)
• SNOWPAC (w/ MIT, TUM) with goal-oriented 

MLMC error estimates

• On the horizon: Gaussian process-based 
approaches: multifidelity EGO; Optimal 
experimental design (OED)

Monte Carlo UQ Methods Surrogate UQ Methods (PCE, SC)

• Production (v6.10+):  
ML PCE w/ projection & regression; 
ML SC w/ nodal/hierarchical interp; greedy 
ML adaptation (DARPA SEQUOIA), 
multilevel fn train (ASC V&V)

• Emerging: multi-index stochastic 
collocation; multiphysics/multiscale 
integration  (ASC V&V); new surrogates 
(GP, ROM, NN) w/ error mgmt. fmwk 
(LDRD, SciDAC); learning latent variable 
relationships (MFNets, LDRD)

• On the horizon: unification of surrogate + 
sampling approaches (LDRD)

• Production: optimal resource 
allocation for multilevel, 
multifidelity, combined (DARPA 
EQUiPS, Wind, Cardiovascular)

• Emerging: active dimensions 
(LDRD, SciDAC), generalized 
fmwk for approx control variates 
(ASC V&V), goal orientation (rare 
events), hybrid methods for GSA

• On the horizon: control of time avg; 
model tuning / selection (LDRD)

Robust



Non-hierarchical data sources

5

Multifidelity Bayesian Networks (MFNets)
• Linear subspace models represent each model 
• Direct Acyclic Graph relationships are encoded via 

conditional independencies on coefficients 
• Similarly to Gaussian Processes, given a prior we 

can compute the posterior in closed-form
• Efficient inference is possible for sparsely 

connected Gaussian Bayesian networks
• A shared manifold can be to increase models' 

correlation 

Model problem illustrating surrogate accuracy exploiting 
different graphs

Challenge
Common hierarchical approaches 
are limited in representing 
realistic data sources

MFNets W/ (left) and W/O (right) shared manifold learning 



Hyperparameter Optimization

Can we design LF or data-driven models to be optimal for the MF UQ task?
• Both data-driven and computational models contain hyper-parameters 
• Selection of hyper-parameters, within MF UQ, is a function of the 

models' ensemble and selected method
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Single-cell thermal battery exemplar.

Hand-tuned hyper-parameters:
  0.01 initial time step
  0.10 predictor-corrector tol
  0.10 nonlinear residual tol
Projected ACV Estimator Variance:     .053138
Single fidelity accuracy for equiv cost: 1.3178 (1005 HF)
Single fidelity cost for equiv accuracy: 24,925 HF (EstVar .053138)

Automatic tuning hyper-parameters:
  0.0067487 initial time step
  0.0010880 predictor-corrector tol

0.046707 nonlinear residual tol
Projected ACV Estimator Variance: 0.0092395
Single fidelity accuracy for equiv cost: 1.3192 (1004 HF)
Single fidelity cost for equiv accuracy: 143,340 HF (EstVar 0.0092395)

24.8x

143x



Incorporating Non-deterministic Models

What is the effect of non-deterministic models on MF UQ?
 Several applications at Sandia involve embedded stochasticity, e.g. cybersecurity, radiation transport, 

Particle-in-Cell, etc.
 Data-driven methods, e.g., neural networks, reduced order models, etc., are often built using noisy 

data and/or non-deterministic optimization methods
 Complex models are too expensive and finite averaging need to be handled within MF UQ
 The correlation among models is reduced by the models’ stochasticity 



    

7Estimator variance as a function of the averaging (for a fixed computational budget).



MF CNNs with embedded error estimation 

How can efficiently train MF CNNs and get an embedded prediction error?

• Convolutional Neural Networks reduce the weights w.r.t. fully connected networks
• CNNs are assembled from encoders, decoders and skip connections
• We propose MF CNNs in which all models are learned simultaneously in an all-at-once 

training paradigm
• We explored the “UQ for ML” aspect by characterizing the uncertainty in predictions that 

are inherent with the ML surrogate 
• We employed DropBlock for the “UQ for ML” task

Application scenarios
• Verification tests:

• Simple 1D regression problems (two model forms)
• Computational fluid dynamics (predicting pressure distribution)

• Dense regression – input and output are images of same size
• Low- to high-dimensional regression – high-dimensional output predicted by low-

dimensional input  


    8



MF CNNs – Building blocks 
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Convolutional decoder 
Alternating layers of convolutions 
and upsampling​

Convolutional encoder 
Alternating layers of convolutions and 
pooling (down-sampling)

Skip connections
Added to mitigate the loss of 
information due to downsampling

DropBlocks
• Dropout layers are widely used for 

regularization
• Dropout layers operate by dropping 

neurons at random during training → 
this corresponds to a simultaneous 
training of an ensemble of 
architerctures

• DropBlocks adapt this idea to CNNs 
by dropping a group of pixels

• MC DropBlock consists in activating 
DropBlocks at evaluation time in 
conjunction with MC sampling → this 
approach can be used to quantify the 
stochasticity in network predicions 



Decoder-Encoder architecture for 1D 
regression  
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• Concatenation between LF prediction and x coordinate
• HF predictions obtained by summing two contribution

• Convolution designed to capture HF and LF linear correlation
• Convolution designed to capture the HF and LF nonlinear correlation 

 



MF CNNs – 1D regression results 
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Dataset Single-fidelity Multi-fidelity

Mean and estimated 5%-95% percentiles for the low- and high-
fidelity via DropBlock realizations after every convolution layer 



Encoder-Decoder architecture for dense 
regression 
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• Input-Output are 64x64 images
• 3 LF models are generated at the decoder stage

 INPUT: concentration field and velocity
 OUTPUT: pressure field
 Dataset: 32 HF + 116 LF (for each resolution)
  

    



MF CNNs – Dense regression results

    
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Mean prediction and 5%-95% percentiles from an ensemble of 1000 DropBlock
pressure realizations for three test data examples sliced along the cylinder centerline

Mean square error and standard deviation resulting from 1000 network evaluations
with 10 DropBlock layers in each network.



Low-to-high dimensional architecture for 
dense regression 

    
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 Input: radius and max velocity
 Output are 64x64 images for the pressure
 3 LF models are generated at the decoder stage 

 
    

Mean square error and standard deviation resulting from 1000 network evaluations
with 6 DropBlock layers in each network.



Low-to-high dense regression results

    
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HF 32 → 

HF 32 → 

HF/LF 32/116 → 

HF/LF 32/116 → 



Using Ensembles to Estimate Uncertainty in Solutions 
to Stochastic Inverse Problems (ASC+ASCR)
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Ensemble averaged solution to a stochastic inverse problem, the true error in the solution, and the 
variance of the solution over the ensemble.

• Data-consistent inversion [BJW, 2018a] seeks to solve the following problem:
Given a target distribution on outputs (QoI), find a distribution on inputs such that 
the push-forward of this distribution matches the target.

• Solution is given by:

• Requires performing a forward uncertainty propagation, which is the dominant cost.
• Using an approximate model [BJW, 2018b] and even a neural network [Zhang, 2021]
• Can we use an ensemble based approach to estimate the error in the inverse solution?



Using ML to Enhance our Ability to Solve Stochastic 
Inverse Problems (ASCR)
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Motivation

Density estimation is often very difficult!

Approach Results

Standard normalizing 
flow is decent.

Principal manifold
flow preserves structure.

• Use ML to improve the 
density estimation - 
unsupervised.

• Normalizing flows seek a 
mapping to a target 
distribution.

• Works well in high-
dimensions, but does not 
necessarily preserve 
structure.

• Principal manifold flows 
seek to find a mapping 
that also preserves 
contour structure 
[Cunningham et al 2022]



Conclusions

• Data-driven methods have been employed widely to 
accelerate/enhance UQ.

• Data-driven surrogate models have errors/uncertainties arising from a 
wide variety of sources.

• Assessing the impact of these errors/uncertainties is necessary to have 
confidence in ML-based predictions.

• Multi-fidelity data fusion and data-consistent inversion can both utilize 
ML in various ways.

• The ability to understand and control the sources of uncertainties in 
data-driven surrogate construction are fundamental technology for 
both machine learning and uncertainty quantification

• High-fidelity Sandia-relevant applications require strategies with 
affordable data requirements and embedded measures of 
trustworthiness.

Comments/Questions?
tmwilde@sandia.gov and ggeraci@sandia.gov 18



Backup Material



Heterogeneous input  parametrization

 How can we handle heterogeneous models' input parametrization?

 The presence of different physics (in models used for MF UQ) often leads to a dissimilar input 
parametrization

 Dimension reduction strategies, e.g. Active Subspace and Basis Adaptation, can be used to obtain a 
shared manifold among models’ input

 This shared manifold can be used to link models with dissimilar parametrization 


    
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MF UQ W/ Dimension reduction

MF UQ W/O Dimension 
reduction

Single fidelity


