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We (1441 and 1463) are broadly interested in using ML to accelerate/enhance our ability to perform UQ
and solve inverse problems.

Can we estimate/assess the uncertainty in predictions made by data-driven models to improve their
trustworthiness?

Data-driven Foundational Activities
Non-hierarchical approaches (DARPA, ASC, LDRD) [Gorodetsky et al., JCP 2020, Gorodetsky et al.,
Comp. Mech 2021]
Hyperparameter optimization (ASC) [Bomarito et al., SciTech 2022]
Incorporating non-deterministic models (LDRD, ASC, SciDAC) [Geraci et al., SIAM CSE 2021]
Heterogeneous input parametrization (LDRD, SciDAC) [Geraci, Eldred, SAND Rep. 2018]

Embedded UQ for ML
Stochastic inverse problems (ASCR) [Butler et al, SISC 2018]
Ensembles for stochastic inverse problems (ASCR, ASC) [Wildey et al, SIAM UQ 2022]
MF Convolutional Neural Networks with embedded error estimation (ASC) [Partin et al., SciTech 2022]



Multi-Fidelity UQ threads
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On the horizon: control of time avg;
model tuning / selection (LDRD)

o On the horizon: unification of surrogate +
. sampling approaches (LDRD)

* On the horizon: Gaussian process-based
approaches: multifidelity EGO; Optimal
experimental design (OED)




Non-hierarchical data sources

Challenge

AN

Common hierarchical approaches 7 —» 5o —» i

are limited in representing

realistic data sources

Multifidelity Bayesian Networks (MFNets)

* Linear subspace models represent each model

« Direct Acyclic Graph relationships are encoded via
conditional independencies on coefficients

« Similarly to Gaussian Processes, given a prior we
can compute the posterior in closed-form

« Efficient inference is possible for sparsely
connected Gaussian Bayesian networks

* A shared manifold can be to increase models'

correlation

Paosterior vs reference in the reduced space
(MSB s 0.042, MMSE is 1.506)

Posterior vs reference in the mduced space with correlation
[MSE is 0515, MMSE is 0.553)
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Hyperparameter Optimization

M.DL
Can we design LF or data-driven models to be optimal for the MF UQ task?
Both data-driven and computational models contain hyper-parameters
Selection of hyper-parameters, within MF UQ, is a function of the
models' ensemble and selected method
24.8x
Hand-tuned hyper-parameters:
0.01 initial time step
0.10 predictor-corrector tol
Axis 0.10 nonlinear residual tol
' g A 00 Projected ACV Estimator Variance: .053138
L Heat Pellet ./ Single fidelity accuracy for equiv cost: 1.3178 (1005 HF)
i Cathode '§ p o Single fidelity cost for equiv accuracy: 24,925 HF (Estvar .053138)
] Separator = E Elpr_
, Anode E- = Automatic tuning hyper-parameters: 143x
; Heat Pellet 0.0067487 initial time step
% 0.0010880 predictor-corrector tol
' Cotiector 0.046707 nonlinear residual tol

Single-cell thermal battery exemplar.

Projected ACV Estimator Variance:

Single fidelity accuracy for equiv cost:
Single fidelity cost for equiv accuracy:

0.0092395
1.3192 (1004 HF)
143,340 HF (EstVar 0.0092395)



Incorporating Non-deterministic Models

What is the effect of non-deterministic models on MF UQ?

4 DEEP Lg,
& %4’

@. ;9_0

Several applications at Sandia involve embedded stochasticity, e.g. cybersecurity, radiation transport,

Particle-in-Cell, etc.

Data-driven methods, e.g., neural networks, reduced order models, etc., are often built using noisy

data and/or non-deterministic optimization methods

Complex models are too expensive and finite averaging need to be handled within MF UQ
The correlation among models is reduced by the models’ stochasticity
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Estimator variance as a function of the averaging (for a fixed computational budget). 7



MF CNNs with embedded error estimation ﬁ

How can efficiently train MF CNNs and get an embedded prediction error?

Convolutional Neural Networks reduce the weights w.r.t. fully connected networks

CNNs are assembled from encoders, decoders and skip connections

We propose MF CNNs in which all models are learned simultaneously in an all-at-once
training paradigm

We explored the “UQ for ML” aspect by characterizing the uncertainty in predictions that
are inherent with the ML surrogate

We employed DropBlock for the “UQ for ML” task

Application scenarios

Verification tests:
Simple 1D regression problems (two model forms)

Computational fluid dynamics (predicting pressure distribution)
Dense regression — input and output are images of same size
Low- to high-dimensional regression — high-dimensional output predicted by low-

dimensional input



MF CNNs — Building blocks

mmocks
. Dropout layers are widely used for

regularization

Dropout layers operate by dropping
neurons at random during training -
this corresponds to a simultaneous
training of an ensemble of
architerctures

DropBlocks adapt this idea to CNNs
by dropping a group of pixels

MC DropBlock consists in activating
DropBlocks at evaluation time in
conjunction with MC sampling - this

approach can be used to quantify the
stochasticity in network predicions
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Decoder-Encoder architecture for 1D

regression
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Concatenation between LF prediction and x coordinate
HF predictions obtained by summing two contribution

Convolution designed to capture HF and LF linear correlation
Convolution designed to capture the HF and LF nonlinear correlation

HF fix)
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Encoder-Decoder architecture for dense
regression

Skip
optional
Skip : explic:it
«ssreseaenes connections

— Skip

D Convolution
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|:| Upsample

;|

|:| Dropout/block

Input-Output are 64x64 images
3 LF models are generated at the decoder stage

(b) (c)

(a)

INPUT: concentration field and velocity

OUTPUT: pressure field
Dataset: 32 HF + 116 LF (for each resolution)
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MF CNNs — Dense regression

results

Pressume
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Mean square error and standard deviation resulting from 1000 network evaluations

with 10 DropBlock layers in each network.
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Low-to-high dimensional architecture for
dense regression

D Convolution
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. Input: radius and max velocity
. Output are 64x64 images for the pressure
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Low-to-high dense regression results
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Using Ensembles to Estimate Uncertainty in Solutionsg

to Stochastic Inverse Problems (ASC+ASCR) M.OL

Data-consistent inversion [BJW, 2018a] seeks to solve the following problem:
Given a target distribution on outputs (Qol), find a distribution on inputs such that
the push-forward of this distribution matches the target.

Solution is given by: 25(Q(N))

T (M)

Requires performing a forward uncertainty propagation, which is the dominant cost.
Using an approximate model [BJW, 2018b] and even a neural network [Zhang, 2021]
Can we use an ensemble based approach to estimate the error in the inverse solution?

mP(X) = ()

Ensemble Mean Updated Density True Error in Updated Density Variance in Updated Density over Ensemble
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Ensemble averaged solution to a stochastic inverse problem, the true error in the solution, and the
variance of the solution over the ensemble.
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Using ML to Enhance our Ability to Solve Stochastic
Inverse Problems (ASCR)

Motivation

Problem 2: Aleatoric Uncertainty
Various components in multiple RL.C Circuits

SIOI0|

Random Components: in addition to being ill-posed, circuit

RLC components are drawn independently from buckets
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Density estimation is often very difficult!

Approach

Use ML to improve the
density estimation -
unsupervised.
Normalizing flows seek a
mapping to a target
distribution.

Works well in high-
dimensions, but does not
necessarily preserve
structure.

Principal manifold flows
seek to find a mapping
that also preserves

contour structure
[Cunningham et al 2022]

M.OL

Results

Approx Contour {x)

L
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Standard normalizing
flow is decent.

Approx Contowur (x)

Principal manifold

flow preserves structure.
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Conclusions

e Data-driven methods have been employed widely to
accelerate/enhance UQ.

* Data-driven surrogate models have errors/uncertainties arising from a
wide variety of sources.

* Assessing the impact of these errors/uncertainties is necessary to have
confidence in ML-based predictions.

* Multi-fidelity data fusion and data-consistent inversion can both utilize
ML in various ways.

* The ability to understand and control the sources of uncertainties in
data-driven surrogate construction are fundamental technology for
both machine learning and uncertainty quantification

* High-fidelity Sandia-relevant applications require strategies with
affordable data requirements and embedded measures of
trustworthiness.

Comments/Questions?
tmwilde@sandia.gov and ggeraci@sandia.gov
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Heterogeneous input parametrization

How can we handle heterogeneous models' input parametrization ?

The presence of different physics (in models used for MF UQ) often leads to a dissimilar input
parametrization

Dimension reduction strategies, e.g. Active Subspace and Basis Adaptation, can be used to obtain a
shared manifold among models’ input

This shared manifold can be used to link models with dissimilar parametrization

VAR(MC)=8425.39, VAR(MF)=20649.23, VAR(MFAB)=2498.36
o* of MF and MFAB are 0.067 and 0.946
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