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Algorithmic Approach (&=

Wasserstein Generative
Adversarial Network (WGAN)

Utilization of previous
implementation? to
generate realistic

Cr, Itic

microstructures from Critic
SEM images .
Scores generated images
ot according to how well they
Ge"™ resemble the training images
"’ ’ T  Generator
Generates synthetic Critic and generator
images that resemble trained together
training images as with images of
Generator closely as possible pristine material )

* 3 up-sampling/convolutional
(ReLu)/batch normalization layers,
1 convolutional (Tanh) layer

* Filters 256-128-64-32

Critic

e 7 convolutional layers (LeakyRelLu)

* Filters 32-32-64-64-128-128-256

I'Hsu, T., et al., Microstructure Generation via Generative Adversarial Network for Hetemgeneous
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Data

/ Training \
CT scan of pristine Pharmatose

* 1800 2d images
* Each 2d image 2,000x2,000 pixels

* Batch: 64 down-sampled (1/4)
512x512 cropped segments

HMX microstructure generation with

single 3,000x3,000 pixel SEM image 1!

"'Chun, S., et al., Deep learning for synthetic
microstructure generation in a materials-by-design
framework for heterogeneous energetic materials.
Scientific Reports, 2020. 10(1).
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. * For a given epoch, the critic scores real and fake images
similarly

* Scores vary significantly between epochs
* “Blobs” in fake images don’t seem to improve
* Training restriction 512x512 pixels image size 5



Results — Image Generation
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Results — Scores for transformed images
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Results — Scores for aged data
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Conclusions

Concept works, the critic of a GAN can be used as a detector
of morphological change but significant improvements
needed before the critic can be used in practice:

* Image generation without “blobs”
* Increase critic sensitivity
* Increase of training image size

Help (ideas, collaborations) from ML/DL community very
much appreciated

Potentially interested customers: NA-193, Aging & Lifetimes
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