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Abstract
Full discretization of nonlinear differential-algebraic equation (DAE) systems is a popular approach for optimization of
these systems due to the availability of general mathematical programming environments and nonlinear programming
solvers, the fast solve times this approach may achieve, and its ability to handle constraints on state variables. The fully
discretized DAE is a large-scale system of algebraic equations that may be handled efficiently by generic solvers. Due
to its size, however, this system is not easy to analyze if an optimization solve fails to converge and a modeling error is
suspected. To alleviate this difficulty, this work proposes to automatically partition a discretized DAE into differential
and algebraic subsystems at each point in time and to apply a Dulmage-Mendelsohn partition to the bipartite graph of
variables and equations of each of these subsystems. In this way, relatively small systems of equations can be analyzed
for structural and numerical nonsingularity rather than the full, discretized DAE model. In the application to a chemical
looping combustion reactor model from the IDAES process model library, the DAE model is found to have a structural
singularity in the algebraic subsystems, and the Dulmage-Mendelsohn partition reveals the cause of this singularity.
An updated version of the model is proposed to eliminate this singularity, and the performance of the two models in a
dynamic optimization problem is compared.
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Introduction

Differential-algebraic equation systems (DAEs) are a ver-
satile modeling tool for describing processes that evolve over
time or space domains, and optimization problems involving
DAEs are necessary for optimal control, state estimation, and
parameter estimation of such systems. Simultaneous formu-
lations of these optimization problems are popular for their
fast solve times and ability to explicitly handle bounds on
differential and algebraic state variables. Furthermore, tools
built on generic algebraic modeling environments for auto-
matic discretization and model construction facilitate the pro-
cess of formulating optimization problems with discretized
DAE models of chemical processes, and the underlying alge-
braic modeling environments allow these models to be sent
to generic nonlinear optimization solvers. However, in the
case that a solver fails to converge, we may want to validate

the nonsingularity of our model equations and investigate
for potential modeling errors. To investigate similar situa-
tions that arise in steady state process optimization, Bublitz
et al. (2017) and Bunus and Fritzson (2002) suggest using the
Dulmage-Mendelsohn partition to identify overconstrained
and underconstrained subsystems that may facilitate model
debugging.

In addition, Shin et al. (2020) and Jalving et al. (2019)
suggest using a “problem graph” for analysis and modu-
lar construction of graph-structured algebraic models, while
Bynum et al. (2021) and Friedman et al. (2013) suggest
using Block objects in Pyomo for the similar concept of
hierarchically-structured models. These approaches facili-
tate algebraic model analysis and debugging by partitioning
models into sub-models that can be analyzed individually.

We combine these two approaches, first partitioning the
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discretized DAE model into subsystems at each point in time,
then applying the Dulmage-Mendelsohn partition to these
subsystems for more targeted analysis than applying this par-
tition to the full model would provide. We then apply this
approach to a chemical looping combustion (CLC) reduction
reactor in the IDAES process modeling framework to demon-
strate its utility in identifying and fixing a singularity.

Background

DAE systems

A differential-algebraic equation system consists of dif-
ferential and algebraic equations and differential, algebraic,
and input variables x, y, and u, that are functions of a contin-
uous domain. For convenience, we refer to this continuous
domain as “time” and use an associated independent variable
t which takes values between t0 and t f .

0 = f (ẋt ,xt ,yt ,ut)

0 = g(xt ,yt ,ut)

}
t ∈ [t0, t f ]

xt0 = x̄t0

(1)

A discretized approximation of this DAE system is given in
Equation (2). Here, t takes discrete values between t0 and
t f with uniform spacing ∆t. In this system, the time deriva-
tive ẋti is approximated using a backward difference, or im-
plicit Euler, discretization. The analysis in this work will as-
sume an implicit Euler discretization, although similar anal-
yses may be performed with other discretizations.

0 = f (ẋt ,xt ,yt ,ut)

0 = g(xt ,yt ,ut)

}
t ∈ {t0, . . . , t f }

ẋti∆t = (xti − xti−1) ti ∈ {t1, . . . , t f }
xt0 = x̄t0

(2)

A key property of DAE systems is the index-1 property. For
the purpose of the analysis presented, we say that a DAE
is index-1 if the differential and algebraic Jacobian matri-
ces ∇ẋt f and ∇yt g are nonsingular everywhere. This prop-
erty ensures that differential equations are sufficient to solve
for the derivative variables ẋ and that algebraic equations are
sufficient to solve for algebraic variables (when treating all
other variables as parameters). These properties are useful
for demonstrating nonsingularity of the discretized DAE and
are commonly made when creating a model of a process.
This work focuses on verification of the index-1 property and
treats its violation as a modeling error. More information
on the DAE index property is given by Ascher and Petzold
(1998).

Algebraic modeling environment

DAE systems representing chemical processes may be
constructed and discretized with the help of several alge-
braic modeling tools. Pyomo.DAE (Nicholson et al. (2018))
allows the explicit creation of derivative variables and dis-
cretization equations in Pyomo (Bynum et al. (2021)), while
the IDAES process modeling framework (Lee et al. (2021))
provides tools for constructing Pyomo.DAE models of chem-
ical processes as well as a library of pre-defined unit models

and thermophysical property packages. This work is con-
cerned with the analysis of a chemical looping reduction re-
actor model from this library.

Bipartite graph of a discretized DAE

To analyze subsystems of a discretized DAE model for
causes of singularity, we first treat the system as a bipartite
graph in which one set of nodes corresponds to variables, the
other set corresponds to equations, and there is an edge be-
tween a variable node and an equation node if the variable
participates in the equation. A maximum matching attempts
to pair as many equations and variables as possible such that
no variable or equation is paired more than once. More for-
mally, a matching in a graph is a set of disjoint pairs of ad-
jacent nodes and a maximum matching is a matching with
the largest possible cardinality. A maximum matching is a
perfect matching if it contains every node. Neither a maxi-
mum matching nor a perfect matching is necessarily unique.
If the maximum matching of the bipartite graph of a sys-
tem of variables and equations is not a perfect matching, the
Jacobian of this system is guaranteed to be singular. We re-
fer to the Jacobian of a system that does not have a perfect
matching as structurally singular. In this case, the Dulmage-
Mendelsohn decomposition partitions the system into three
subsystems: Underconstrained, where a maximum matching
covers every equation but leaves unmatched variables, over-
constrained, where a maximum matching covers every vari-
able but leaves unmatched equations, and square, where a
maximum matching is a perfect matching. An illustration of
this decomposition for the reduction reactor model is given in
Figure 2. This decomposition can provide significant insight
into why a system is structurally singular. More information
on these algorithms is given by Davis (2006).

Analysis of chemical looping combustion reactor

To demonstrate the utility of the tools and procedures de-
scribed, we analyze the equations of a chemical looping re-
duction reactor obtained from IDAES version 1.7.

Model description

The reactor model we study is a dynamic instance of a
reduction reactor in a chemical looping process described by
Ostace et al. (2018) and Okoli et al. (2020). The reactor is
a moving bed, counter-current reactor in which a methane
fuel reacts with an iron oxide oxygen carrier according to the
reaction (3). The moving-bed nature of the reactor informs
the assumption that the solid phase moves with a velocity vs,
constant along the length of the reactor, that is less than the
minimum fluidization velocity.

CH4+12Fe2O3→ 2H2O+CO2+8Fe3O4 (3)

The model is described by partial differential and algebraic
equations, where states are defined over a time domain de-
noted by t and a spatial domain along the normalized length
of the reactor denoted by z. The gas phase enters at z = 0 and
flows in the positive z direction, while the solid phase en-
ters at z = 1 and flows in the negative z direction. Degrees of



freedom are the flow rates and conditions of the gas and solid
inlet flow streams. Flow rates are control inputs, while other
inlet conditions may be treated as disturbances. For the pur-
pose of the analysis in the remainder of this section, the re-
actor model is treated as a square system in which degrees of
freedom are fixed. The nominal steady state operating condi-
tions of this reactor correspond to inlet conditions with a gas
flow rate of 128 mol/s, a solid flow rate of 591 kg/s, a gas
composition of 97.5% CH4 and 2.5% CO2 by mole, a solid
composition of 45% Fe2O3 and 55% Al2O3 by mass, and a
pressure of 2.0 bar.

The differential equations are gas and solid phase mate-
rial balances (4) and (5) and gas and solid phase energy bal-
ances (6) and (7).

l
∂Mi

∂t
=

∂ fi

∂z
+ lNk,g, i ∈ {CH4,CO2,H2O} (4)

l
∂Mi

∂t
=

∂ fi

∂z
+ lNi,sMWi, i ∈ {Fe2O3,Fe3O4,Al2O3} (5)

l
∂Hg

∂t
=

∂ fH,g

∂z
+ lQg (6)

l
∂Hs

∂t
=

∂ fH,s

∂z
− lQg +∆Hrxnξ (7)

Here, l = 5 m is the length of the reactor, Mi is the material
holdup of species i, fi is the flow rate of i, Ni,g is the rate of
transport of i into the gas phase, Ni,s is the rate of transport
of i into the solid phase, MWi is the molecular weight of i,
Hg is the gas phase enthalpy holdup, Hs is the solid phase en-
thalpy holdup, fH,g is the gas phase enthalpy flow rate, fH,s
is the solid phase enthalpy flow rate, Qg is the rate of heat
transfer into the gas phase, ξ is the extent of reaction, and
∆Hrxn is the enthalpy of reaction (3). Initial conditions are
specified in terms of material and energy holdups along the
length domain.

Algebraic equations describe thermodynamics, reactions,
and transport within the reactor model. Selected algebraic
equations that are necessary for the analysis in the remain-
der of this section are the gas and solid holdup equations (8)
and (9), the skeletal and particle density equations (10) and
(11), the gas and solid area equations (13) and (12), the gas
and solid component sum equations (14) and (15), the solid
component flow equation (16), and the solid enthalpy flow
equation (17).

Mi = ρgyiAg, i ∈ {CH4,CO2,H2O} (8)

Mi = ρptclxiAs, i ∈ {Fe2O3,Fe3O4,Al2O3} (9)

ρskel =

(
∑

i∈{Fe2O3,Fe3O4,Al2O3}

xi

ρskel,i

)−1

(10)

ρptcl = (1− εptcl)ρskel (11)

As = (1− ε)A (12)

Ag = εA (13)

∑
i∈{CH4,CO2,H2O}

yi = 1 (14)

∑
i∈{Fe2O3,Fe3O4,Al2O3}

xi = 1 (15)

fi = xiFs, i ∈ {Fe2O3,Fe3O4,Al2O3} (16)

fH,s = ĤsFs (17)

In these equations, ρg is the gas phase molar density, ρptcl
is the density of the porous solid particle, ρskel is the den-
sity of the solid material, ρskel,i is the density of species i, yi
is a gas phase mole fraction, xi is a solid phase mass frac-
tion, εptcl is the particle porosity, A = 33.2 m2 is the reactor
cross-sectional area, Ag and As are the cross-sectional areas
occupied by the gas phase and solid particles, ε = 0.8 is the
bed void fraction, and Fs is the solid phase mass flow rate.

The model is discretized with Pyomo.DAE using a back-
ward difference discretization in the time domain, a back-
ward difference discretization for the gas phase spatial
derivatives, and a forward difference discretization for the
solid phase spatial derivatives. In the instance of this model
used for the following analysis, a 300 s horizon with 11
discretization points is used. Eleven discretization points
are used for the normalized length domain as well. The
full model equations, including values of all parameters
used, may be found in the idaes/gas solid contactors
directory in version 1.7 of the IDAES repository at
github.com/idaes/idaes-pse. With the reactor model
defined, we would like to analyze the equations to identify
singularities and their causes. The analysis for the remainder
of this section considers the discretized process model with
degrees of freedom fixed to nominal values. In this way, the
discretized model is a square system of variables and equa-
tions that can be partitioned and analyzed with the Dulmage-
Mendelsohn decomposition.
Model analysis

We first partition the model into square subsystems at
each point in the discretized time domain and analyze each
for singularity by performing a maximum matching. The cor-
responding decomposition of the Jacobian matrix is given by
Equation (18), where J is the Jacobian of the discretized DAE
and Jt is the Jacobian of the subsystem of equations and vari-
ables at time point t. The incidence matrix of the discretized
reactor model is shown in the left half of Figure 1. Here
and throughout, rows correspond to equation coordinates and
columns correspond to variable coordinates. The system por-
trayed has 10,197 equations and variables.

J =

 Jt0

∗
. . .

∗ ∗ Jt f

 (18)

Fully discretized system Subsystem at 𝑡 = 30 s (permuted)

Algebraic subsystem

Figure 1: Left: Incidence matrix of variables and equations
in the discretized chemical looping model. Right: Subsystem
at t = 30 s permuted into the order given by Equation (19).



Performing a maximum matching on the variables and
equations of this system reveals a singularity as the cardinal-
ity of the maximum matching is only 10,187 – there are 10
unmatched variables and equations. Rather than analyze the
incidence graph of the full, discretized system, however, we
break this system down into discretization, differential, and
algebraic subsystems at each point in time and analyze these
smaller systems individually. The corresponding partition of
the Jacobian submatrix at time t is shown in Equation (19).

Jt =

 I −∆tI
∇xt gt ∇yt gt
∇xt ft ∇yt ft ∇ẋt ft

 (19)

We note that nonsingularity of ∇yt gt and ∇ẋt ft is sufficient
for structural nonsingularity of Jt , and for numerical nonsin-
gularity of Jt in the limit as ∆t→ 0. The incidence matrix of
the reactor model at t = 30 s, permuted into the order given
by Equation (18), is shown in the right half of Figure 1. This
partition of equations and variables is obtained by identifying
the modeling components introduced by Pyomo.DAE.

Underconstrained
subsystem

Algebraic subsystem
Overconstrained

subsystem

Figure 2: Center: Incidence matrix of algebraic subsystem
at t = 30 s with variables and equations ordered according to
the Dulmage-Mendelsohn partition. Left: Incidence matrix
of the underconstrained subsystem. Right: Incidence matrix
of the overconstrained subsystem, permuted into independent
diagonal blocks.

The Jacobian of discretization equations with respect to
differential variables Mi, Hg, and Hs and that of differential
equations (4)-(7) with respect to time derivative variables are
nonzero multiples of the identity matrix, and are therefore
nonsingular. A maximum matching of the rows and columns
of the algebraic Jacobian ∇yt gt , however, reveals that it is
singular. In the Dulmage-Mendelsohn partition, the under-
constrained system contains 90 variables and 80 equations,
while the overconstrained system contains 60 variables and
70 equations. The incidence matrix of the algebraic sub-
system at t = 30 s, ∇yt1

gt1 , is shown in the center of Fig-
ure 2, permuted into an order consistent with the Dulmage-
Mendelsohn partition. We would like to identify the cause of
this singularity by examining the equations and variables in
the overconstrained and underconstrained subsystems.

The incidence matrix of the overconstrained subsystem is
shown in the right third of Figure 2. The rectangular diago-
nal blocks in this incidence matrix each contain variables and
equations at a particular point in the discretized length do-
main. The variables are the solid phase mass fractions xFe2O3,
xFe3O4, and xAl2O3, the solid phase skeletal density ρskel, the
solid phase particle density ρpart, and the solid phase cross-

sectional area As at a particular point in the length domain.
The equations are the holdup calculation equations (9), the
particle density equation (11), the skeletal density equation
(10), the solid phase area equation (12), and the mass frac-
tion sum equation (15).

Among these equations, we would expect the mass frac-
tion sum equation to be matched with one of the mass frac-
tion variables and for the particle density variable to be
matched with the corresponding holdup calculation equa-
tion. In this case, the particle density equation would be
unmatched, but could be matched with particle porosity if it
were made a variable indexed by space and time rather than a
constant parameter. Letting particle porosity vary also makes
the model more realistic, as the assumption of constant par-
ticle porosity does not necessarily hold for a reacting solid.
Adding this variable yields a system with more variables than
constraints, so in this case an equation must be added to make
sure the algebraic subsystem remains square. To determine
what equation should be added or variable fixed, we exam-
ine the underconstrained subsystem, the incidence matrix of
which is shown in the left third of Figure 2.

The underconstrained subsystem does not admit a parti-
tion into independent diagonal blocks; however, by inspec-
tion, it contains the same nine variables and eight equations,
repeated at every point in the discretized spatial domain ex-
cept for the solid inlet at z = 1. These variables are the total
solid phase flow rate Fs, the solid phase component flow rates
fFe2O3, fFe3O4, and fAl2O3, the solid enthalpy flow rate fH,s,

the solid material flow gradients
d fFe2O3

dz ,
d fFe3O4

dz , and
d fAl2O3

dz ,

and the solid enthalpy flow gradient d fH,s
dz . The equations

are the solid phase material and enthalpy flow equations (16)
and (17) and the material and enthalpy gradient discretiza-
tion equations. Among the variables in this overconstrained
subsystem, all are well-determined by these equations other
than the solid phase total flow rate Fs. Because the veloc-
ity vs, particle density, and cross-sectional area of the solid
phase is known, this flow rate is known as well by Equation
20.

Fs = ρpartAsvs (20)

However, this equation is not included in the chemical loop-
ing reactor model as of IDAES 1.7. To calculate the solid
flow rate Fs and keep the algebraic system square while
we make particle porosity a variable, we propose adding
Equation (20), the solid flow-density equation, to the reac-
tor model at every point in the discretized length domain.
We refer to the new version of the reactor model, with these
changes made, as the “patched version” of the model.

After adding Equation (20) to the moving bed reactor
model, we may repeat the incidence matrix analysis to make
sure the square model is now nonsingular. The discretized
system now has 10,310 variables and equations. A maximum
matching of this system has cardinality 10,310, indicating
that the system is structurally nonsingular. In addition, we
may analyze the algebraic subsystem at every point in time.
The incidence matrix of the subsystem at t = 30 s, as well as
the isolated algebraic subsystem, is shown in Figure 3.



Algebraic subsystemSubsystem at 𝑡𝑡 = 30 s

Figure 3: Left: Incidence matrix of the subsystem of the
patched reactor model at t = 30 s. Right: Incidence matrix of
the algebraic subsystem, permuted to block triangular form.

The algebraic subsystem at a particular point in time in
the patched model has 785 equations and variables. In con-
trast to the algebraic subsystem of the old model, the inci-
dence matrix of which is shown in Figure 2, the incidence
matrix of the patched algebraic subsystem may be permuted
to have a zero-free diagonal and is structurally nonsingular.
One particular permutation with a zero-free diagonal, that of
a block lower triangular form, is shown in Figure 3. This sys-
tem has a trivial Dulmage-Mendelsohn partition as the under-
constrained and overconstrained subsystems are empty – the
algebraic system is now structurally well-determined.

A block triangularization of the algebraic subsystem of
the patched model yields an ordered partition into 665 square
diagonal blocks, only 40 of which have more than one vari-
able and equation. Evaluated at the nominal steady state of
the reactor model, none of the blocks have an all-zero Ja-
cobian. For the 40 blocks with more than one variable and
equation, the maximum condition number is 2×106, so this
algebraic Jacobian is both structurally and numerically non-
singular at the point evaluated.

Comparison of old and new models

With the singularity in the algebraic subsystem elimi-
nated, we would like to check whether the model performs
better for the purpose of dynamic optimization. To this end,
we pose a dynamic optimization problem involving the re-
actor model, construct the KKT matrix of this optimization
problem, and attempt to solve the optimization problem with
IPOPT 3.13.2 with the old and new versions of the model.

The dynamic optimization problem that we pose seeks to
minimize deviation from a target setpoint, given an initial set-
point as initial conditions. Control inputs are gas and solid in-
let flow rates, which are piecewise constant on 60 s intervals.
The variables fixed at t = 0 as initial conditions are gas phase
material and energy holdups MCH4, MCO2, MH2O, and Hg at all
points in space except the gas inlet at z = 0 and solid phase
material and energy holdups MFe2O3, MFe3O4, MAl2O3, and Hs
at all points in space except the solid inlet at z = 1. Collec-
tively, these variables whose initial conditions are fixed are
referred to as v, with initial values v̄0 obtained from the ini-
tial steady state. The variables with deviation-from-setpoint
penalized in the objective function are gas flow rate fg, solid
flow rate fs, pressure P, gas mole fractions yCH4, yH2O, and

yCO2, solid mass fractions xFe2O3, xFe3O4, and xAl2O3, gas tem-
perature Tg, and solid temperature Ts. Again, these states are
penalized at all points in space except for the inlet of their re-
spective phases. Collectively, these variables penalized in the
objective are referred to as w, with target values w∗ obtained
from a target steady state. In the instance of this problem
used for this comparison, the initial steady state is the nom-
inal steady state described above. The target steady state is
the steady state corresponding to the same inlet parameters
for pressure, composition, and temperatures, but with a gas
inlet flow rate of 140 mol/s and a solid inlet flow rate of 600
kg/s. Variables in the optimization problem are initialized to
their values at the initial steady state. The formulation of this
optimization problem is given by Problem (21). We formu-
late and attempt to solve this optimization problem with the
original and patched versions of the reduction reactor model.

min ∑t ‖wt −w∗‖2

s.t. Discretized model equations
Fg and Fs piecewise constant
v0 = v̄0

(21)

We note that Problem (21) is an equality-constrained opti-
mization problem and can be solved by applying a globalized
Newton method to the optimality conditions of this equality-
constrained problem (Nocedal and Wright (2006)). One of
the requirements to guarantee convergence is that the Jaco-
bian of the system of optimality conditions is nonsingular.
This Jacobian, K, is given by Equation (22), where W is the
Hessian of the Lagrangian of Problem (21) and A is the Jaco-
bian of the equality constraints.

K =

[
W A
AT

]
(22)

We would like to check whether this matrix is singular for
Problem (21), evaluated at the initial guess (variables take
their initial steady state values), with the original and patched
versions of the model used in the equality constraints. To
check singularity, we perform a symbolic and numerical
factorization with MA27 (Duff and Reid (1982)), as this
code is commonly used in optimization solvers. In addi-
tion, we attempt to solve each optimization problem with
IPOPT (Wächter and Biegler (2006)), using MA27 as the
linear solver. The results of factorizing the K and solving
the optimization problem are given in Table 1.

Table 1: Statistics of the dynamic optimization problem with
two versions of the reduction reactor model

Model Rank Max. reg. coef. Iterations
Original 20,417 / 20,430 7.8 N/A
Patched 20,650 / 20,650 N/A 4

In Table 1, the rank is reported as a fraction of the
row/column dimension. “Max. reg. coef.” refers to the
maximum regularization coefficient used by IPOPT to try to
converge despite a singular KKT matrix (see Wächter and
Biegler (2006)). Iterations are the number of iterations re-
quired for a successful convergence between the two models.
These results indicate that the K with the original model is
singular, while K with the patched model is nonsingular. Fur-
thermore, the optimization problem with the patched model



converges very quickly and without regularization, while that
with the original model terminates after 551 iterations with
diverging iterates.

Conclusion

We have presented an approach for analyzing a discretized
DAE model in which we first exploit our knowledge of
problem structure to partition the variables and equations
into differential, algebraic, discretization, and derivative at
each point in time, then use the Dulmage-Mendelsohn par-
tition to analyze these subsystems individually and iden-
tify the cause of singularities. We have applied the ap-
proach to a chemical looping combustion reduction model
in IDAES 1.7 to find and eliminate singularities in a patch
that has been incorporated as of IDAES 1.8. The patched
version of the model leads to a nonsingular KKT matrix
and fast convergence in a simple dynamic optimization prob-
lem that does not converge with the original version of the
model. This study demonstrates the advantage of com-
bining knowledge of problem structure with analyses of
the bipartite graphs of specially identified subsystems of
variables and equations. Furthermore, the comparison of
the dynamic optimization problem with the two models il-
lustrates the importance of eliminating singularities in the
model Jacobian. The Dulmage-Mendelsohn partition has
been implemented in Pyomo and may be accessed in the
pyomo/contrib/incidence analysis subdirectory of the
Pyomo repository at github.com/pyomo/pyomo. We hope
this work will serve as an illustrative example of a systematic
procedure to identify the causes of singularity in large-scale,
structured, nonlinear algebraic models.
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