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The Grand Challenge of Molecular Modeling

Can we predict the behavior of molecules at the atomic scale?
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Why is doing Quantum Mechanics

Solving HY = EY scales horrendously!
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Let’'s use Machine Learning!
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What's the Problem? — Part 1: Training Data

We want to use ML on large molecules, but we can’t train on things that big!

Training Set
¥ SRS G
W oAt &%

Gonzalo, Osuna, et al., Nature chemical biology (2014)
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What's the Problem? — Part 1: Training Data
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Solution: Learn the electron density

Electron Densities
can interact!
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What's the Problem? — Part 2: Learning in 3D Space

The electron density is a 3D objec
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Solution: Euclidean Neural Networks
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Solution: Euclidean Neural Networks
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The Big Ildea: Learn the electron density with
Euclidean Neural Networks

Machine Learning

_A

/r_ -

,," ’ Quantum Chemistry g Hellmann-
S -y loan- Feynman
"gﬂ Calculation - CCSD(T)

‘»

Euclidean Neural Network

\

i
o\
ri\

Ak

el
"%
k‘ﬁ
)
W

[

¢

A

A
¢

O




I: The Grand Challenge II: What’s the Problem? Ill: Results: Water IV: Results: DNA V: Conclusions

@
! Experiment 1: Learning the e~ density

Train on model on 500 samples of 8 water molecule clusters
(DFT)  (For reference, ImageNet has 14 million images.)

ML Density Target Density Difference

Density difference across the entire Test Set:

0.25%
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An aside: The importance of equivariance

Electron Density Learning Curves
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o g
: e
Train on 8 water vy o X
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water clusters. 2@ g &
ML Density Target Density Difference

Density difference across the 30 water molecule set:

0.60%
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Mean Force Error (kcal/mol/A)
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Experiment 4. Comparison with forces
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Long-range interactions affect forces more than density

Energy and Force

Electron Density

By learning the electron density, we can
extrapolate much more effectively
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: Long-range interactions affect forces more than density

This is consistent with our understanding of perturbation

theory. |
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DNA — ML electron densities at the biomolecular scale
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DNA — Learning the electron density

Molecular dynamics Quantum

HY = EY

T o = —

Atomic coordinates Input layer Hidden layers Output layer
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@
A real, experimental structure! (PDB code 251d)

ML prediction Density difference: ML - target

+/- 0.006 e /bohr3

Lee, Rackers & Bricker, ChemrXiv, 2022
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Electrostatic Potential
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i Systematic Extrapolation

Sequence Length Size Dependence
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@
® We can predict very large structures!

Drew-Dickerson dodecamer Stacked Holliday junction Nucleosome core particle
758 atoms, 3780 electrons 1260 atoms, 6280 electrons 147 bps, 9346 atoms, 46980 electrons
(PDB code 4c64) (PDB code 1dcw) (PDB code 1kx5)

~1 second on

a single GPU

Lee, Rackers & Bricker, ChemrXiv, 2022
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Take-Aways

A. Any serious model has to be able to "train on small, run

on big”. :
B. Euclidean Neural Networks + physics is the tool for the ‘
job

C. This wq
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Hellmann-Feynman Forces

Basis: aug-cc-pvqz Basis: oTZHF
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Solution: Learn the electron density

The Hellmann-Feynman Theorem:
The force on any atom can be exactly calculated from the I
surrounding electron density using only classical

Machine Learning Physics
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Experiment 2: The importance of higher-order features

Electron Density Learning Curves
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Hellmann-Feynman Forces

aug-cc-pvdz > e
82 basis functions

L]
—— Energy Derivative Forces

— e | /Hellmann-Feynman Basis
: 154 basis functions

—— Energy Derivative Forces
—— HFT Forces

aug-cc-pvqz
344 basis functions
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—— HFT Forces

Hellmann-Feynman Force Error:
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“ HFT forces with CCSD(T) densities ¢ t

hft-basis-MEDIUM hft-basis-LARGE |
154 basis functions 334 basis functions
—— Energy Derivative Forces —— Energy Derivative Forces I
—— HFT Forces —— HFT Forces




