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The Grand Challenge of Molecular Modeling

Can we predict the behavior of molecules at the atomic scale?
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Why is doing Quantum Mechanics hard?

 For 50 atoms, this would take 2 months.

 For 100 atoms, this would take 20 
years!!! 
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Let’s use Machine Learning!

 Quantum
 Mechanics

Neural Network

Neural Network
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What’s the Problem? – Part 1: Training Data

 We want to use ML on large molecules, but we can’t train on things that big!

Gonzalo, Osuna, et al., Nature chemical biology (2014)

Training Set

Effective Radius
10 Å
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Solution: Learn the electron density

Electron Densities 
can interact!
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What’s the Problem? – Part 2: Learning in 3D Space

 The electron density is a 3D object.

 Convolution 
changed 

everything.
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Solution: Euclidean Neural Networks

e3nn 
features are 
combinations 
of spherical 
harmonics

e3nn is 
equivariant

Graph Convolutional Neural 
Network:
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Solution: Euclidean Neural Networks

Rackers, Tecot, Geiger, Smidt, arXiv, 2022
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The Big Idea: Learn the electron density with 
Euclidean Neural Networks
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Experiment 1: Learning the e - density

 Train on model on 500 samples of 8 water molecule clusters 
(DFT)      (For reference, ImageNet has 14 million images.)

Difference

Density difference across the entire Test Set:

0.25%
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An aside: The importance of equivariance
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lmax=0 : x 500

lmax=1 : x 250 + x 83 

lmax=2 : x 167 + x 56 + 

x 33  

…
(Total number of 500 features in every model)
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Experiment 2: Extrapolation

 Train on 8 water 
clusters. Test on 30 
water clusters.

Difference

Density difference across the 30 water molecule set:

0.60%

Train Test
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Experiment 3: Systematic Extrapolation

Training Set Cluster Size

D
en

si
ty

 D
iff

 (%
)

0 5 10 15 20 25 30
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2

Density Difference: 30 water molecule test set

~7 Å

Train
Test

Rackers, Tecot, Geiger, Smidt, arXiv, 2022
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Experiment 4: Comparison with forces
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Rackers, Tecot, Geiger, Smidt, arXiv, 2022
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Long-range interactions affect forces more than density

19

Energy and Force

Electron Density

13 Å+

~7 Å

By learning the electron density, we can 
extrapolate much more effectively
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I: The Grand Challenge II: HIPPO III: Euclidean Neural Networks: Water IV: Euclidean Neural Networks: DNA V: Conclusions

Long-range interactions affect forces more than density
20

 This is consistent with our understanding of perturbation 
theory.

Polarization
Exchange-Repulsion

Dispersion

Electrostatics
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DNA – ML electron densities at the biomolecular scale

21

input output
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DNA – Learning the electron density

22

Euclidean 
Neural 

Network

Input layer Hidden layers Output layerAtomic coordinates

Molecular dynamics Quantum
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A real, experimental structure! (PDB code 251d)

ML prediction Density difference: ML - target

+/- 0.006 e-/bohr3

Lee, Rackers & Bricker, ChemrXiv, 2022
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Electrostatic Potential

Lee, Rackers & Bricker, ChemrXiv, 2022
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Systematic Extrapolation

Sequence Length Size Dependence

Lee, Rackers & Bricker, ChemrXiv, 2022
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We can predict very large structures!

Stacked Holliday junction
1260 atoms, 6280 electrons

(PDB code 1dcw)

Drew-Dickerson dodecamer
758 atoms, 3780 electrons

(PDB code 4c64)

Nucleosome core particle
147 bps, 9346 atoms, 46980 electrons

(PDB code 1kx5)
 

~1 second on 
a single GPU

Lee, Rackers & Bricker, ChemrXiv, 2022
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A. Any serious model has to be able to ”train on small, run 
on big”.

B. Euclidean Neural Networks + physics is the tool for the 
job

C. This works for water and DNA!

Take-Aways

I: The Grand Challenge III: Results: Water IV: Results: DNA V: ConclusionsII: What’s the Problem?



28
Acknowledgements

Steve Plimpton

Aidan Thompson

Susan Rempe

Lucas Tecot
(UCLA)

Tess Smidt
(MIT) 

Shivesh Pathak
(Sandia)  

Will Bricker and Alex 
Lee
(UNM)  

I: The Grand Challenge III: Results: Water IV: Results: DNA V: ConclusionsII: What’s the Problem?



29



30
Hellmann-Feynman Forces
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Solution: Learn the electron density

ᵃ� Ψ = ᵃ� ᵯ�

ᵰ� = Ψ∗Ψ

The Hellmann-Feynman Theorem:
The force on any atom can be exactly calculated from the 

surrounding electron density using only classical 
electrostatics.

Machine Learning Physics
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Experiment 2: The importance of higher-order features

lmax=0 : x 500

lmax=1 : x 250 + x 83 

lmax=2 : x 167 + x 56 + 

x 33  

…
(Total number of 500 features in every model)
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Hellmann-Feynman Forces

aug-cc-pvdz
82 basis functions

Hellmann-Feynman Basis
154 basis functions

aug-cc-pvqz
344 basis functions

Hellmann-Feynman Force Error:
20 water molecule clusters



HFT forces with CCSD(T) densities
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hft-basis-LARGE
334 basis functions

hft-basis-MEDIUM
154 basis functions


