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LDRD - DETECTING UNKNOWN CYBER ATTACKS USING BAYESIAN
NETWORKS

- Challenge:

* Most tools still identify isolated indicators or techniques and are only marginally
useful because they “...bludgeon analysts with ‘just to be safe’ indications and
warnings” resulting in a “crush of false positives.” — SNL Cyber SME John Jarocki

* Proposed Solution:

« Use Bayesian Networks (BNs) as the core of a host-based cyber intrusion detection
system

» Detect subtle malicious behavior by fusing existing SME knowledge with event data to
create an interpretable solution using multivariate relationships

- Enable SME customization to tune the system based on the specific application

« Avoid overloading analysts with false alarms by only reporting high confidence
indicators

Overarching Goal:

Develop techniques which help
decrease the time between cyber
compromise and discovery
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WHY BAYESIAN NETWORKS

« Explainable “glass box” method with results that can be examined to understand how/why they were
produced

. Ideal for predicting the likelihood that any one of several possible known causes was the contributing factor
to an event that occurred

*  Useful for human-in-the-loop interactive analytics
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*  Can also be trained on unlabeled data — able to learn relationships between features, not just between
features and labels

*  Provide both confidence estimate (based on probabilistic model) and goodness-of-fit (anomaly detection)
metrics

Amenable to feature importance analysis (explainability)

«  ‘“value of information” (VOI) analysis — which features generally contribute most to a specific classification
output (similar to Random Forest feature importance)

*  “impact analysis” - why a given sample (i.e., a specific combination of features) produced a particular
classification



BAYESIAN NETWORK PIPELINE
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Bayesian Network (BN)
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@
5 | ADDITIONAL BN PIPELINE CAPABILITIES

« Target-Informed Discretization — Method for choosing discrete bins for features to
maximize the classification improvement of the target variable

Shown to dramatically improve the performance of BNs compared to discretizing using k-
means clustering or equal frequencies

* Automated training of a wide portfolio of BN architectures

Allows for a diversity of network structures to be evaluated — BN performance is dependent on
the type of structural learning algorithm used

BN pipeline can evaluate the performance of combinations of up to three different structural
learning techniques




CLASSIFICATION SYSTEM AND TRAINING DATA

Raw data is generated by the Tracer FIRE system (TF9/TF10)

» ~2 weeks of Windows Sysmon data (2019/2020) consisting of ~18.4 million Sysmon events

Data preprocessor

* Converted ~ 400GB of JSON data and stored in Elasticsearch NoSQL DB
Scenario Extractor converted Sysmon events to a collection of labeled (suspect/innocuous) scenarios

(process trees) based on SME-provided ground truth

» Each scenario feature vector is composed of the number and type of suspicious Sysmon events as
well as associated process tree statistics (tree depth, scenario duration, etc.)

» 3933 scenarios with at least one suspicious event

» 173 scenarios labeled as malicious (4.4%; imbalanced training set)

Scenario data used for BN train/test
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BAYESIAN NETWORK (BN) TRAINED FROM CYBER DATA

BN developed from TF9/TF10 training data:

* Model is relatively interpretable -
- structure and probability tables can be inspected m— vy | .
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IMPACT ANALYSIS: TRUE VS FALSE POSITIVE SCENARIOS

« Determine impact of single or paired feature states against the target variable to help resolve ambiguous cases
* Nodes indicate feature names, states, and positive class probability if only this feature’s evidence is observed.
« Edges indicate positive class probability if the two connected features’ evidence is observed.

« This model believes that the combination of 0 known company percent with 1 threat 19 count (Execution of exe in Users or
Temp subdirectory) is the most suspect
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BN PIPELINE VS. RANDOM FOREST

« Trained BN using 2/3 of randomized TF9/TF10 data and Random TAN NBC-1 NBC-2
tested with remaining 1/3 of data Forest  (PT=0.5) (PT=0.5) (PT=0.13)

« All table metrics are the average cross-validation value (3- Accuracy 99.3% 98.4% 99.0% 99.0%

fold) TPR/Recall 85.0% 80.9% 81.6% 89.0%

* Naive + Cluster BN (NBC) found by optimizing for highest FPR 0.05% 0.82% 0.24% 0.56%

F1 score Precision 98.0% 82.0% 94.1% 88.0%

F1 Score 91.0% 81.4% 87.2% 88.5%

BN models using pipeline:
 TAN: Tree-Augmented Naive Bayes at 0.5 probability

threshold

« NBC-1: Naive Bayes with Cluster BN at 0.5 probability Lo
threshold

* NBC-1: Naive Bayes with Cluster BN at 0.13 probability 08 -
threshold

Precision

* Amenable to tuning

« Changing probability threshold for NBC Positive label to
0.13 results in improved Accuracy, Recall and F1 score, but
somewhat degraded Precision

Interpretable/Explainable/Tunable classifier that has comparable T Y "
performance to Random Forest



WHY NOT RANDOM FOREST + LIME/SHAP?

Rudin (2019) [1]:

* ltis preferable to use models that are inherently interpretable for making high-stakes
decisions

* Any explanation method for a black-box model will almost certainly be inaccurate for
certain inputs

Smith et al. (2021) [2]:

 LIME and SHAP make strong assumptions of feature independence and linear
interactions which are frequently inaccurate
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FUTURE DIRECTIONS

Potential functionality to be added to the BN pipeline:

Multi-label (multiple targets to classify) and multi-class (>2 classes per target) classification
Query Dynamic Bayesian Networks (DBNs) — temporal BNs

Generate structure from rules and/or network graphs

Query with probabilistic evidence (i.e., specify nonbinary distribution over feature states)
Simplify overly complex CPTs via “noisy OR” encoding

Discriminative structure search algorithm (rewards classification performance, not model fit)
State-level explainability analysis (which feature values matter most)

Analysis of difficult (never seen before) and ambiguous (contradictory evidence) cases



