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LDRD - DETECTING UNKNOWN CYBER ATTACKS USING BAYESIAN 
NETWORKS

• Challenge:
• Most tools still identify isolated indicators or techniques and are only marginally 

useful because they “…bludgeon analysts with ‘just to be safe’ indications and 
warnings” resulting in a “crush of false positives.” – SNL Cyber SME John Jarocki

• Proposed Solution:
• Use Bayesian Networks (BNs) as the core of a host-based cyber intrusion detection 

system
• Detect subtle malicious behavior by fusing existing SME knowledge with event data to 

create an interpretable solution using multivariate relationships
• Enable SME customization to tune the system based on the specific application
• Avoid overloading analysts with false alarms by only reporting high confidence 

indicators
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Overarching Goal: 
Develop techniques which help 
decrease the time between cyber 
compromise and discovery 



WHY BAYESIAN NETWORKS

• Explainable “glass box” method with results that can be examined to understand how/why they were 
produced 

• Ideal for predicting the likelihood that any one of several possible known causes was the contributing factor 
to an event that occurred

• Useful for human-in-the-loop interactive analytics

• Lightweight, cheap to train, interpretable, relatively robust to overfitting

• Tolerate and automatically infer missing feature observations

• Unsupervised learning (clustering, anomaly detection, forecasting) and/or supervised learning 
(classification)

• Can also be trained on unlabeled data – able to learn relationships between features, not just between 
features and labels

• Provide both confidence estimate (based on probabilistic model) and goodness-of-fit (anomaly detection) 
metrics

• Amenable to feature importance analysis (explainability)
• “value of information” (VOI) analysis – which features generally contribute most to a specific classification 

output (similar to Random Forest feature importance)

• “impact analysis” - why a given sample (i.e., a specific combination of features) produced a particular 
classification
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BAYESIAN NETWORK PIPELINE4

• Collection of Python scripts which interact with the 
Bayes Server API to facilitate generation of a trained 
Bayesian Network (BN)

• Provides automation for most tasks while still 
allowing for human tuning/intervention

• User still needs to extract/transform their data and 
select relevant features to train on
• Pipeline support for downselection of features (e.g., remove 

correlated features)
• User can analyze their results to better understand 

how the BN classifier is working:
• Batch Query – classify novel data using a single target variable 

with binary output (e.g., “suspect” or not)
• K-fold Cross Validation – Estimate the model “skill” on new data
• Explainability – Impact Analysis, Value of Information (VOI)



ADDITIONAL BN PIPELINE CAPABILITIES

• Target-Informed Discretization – Method for choosing discrete bins for features to 
maximize the classification improvement of the target variable
• Shown to dramatically improve the performance of BNs compared to discretizing using k-

means clustering or equal frequencies

• Automated training of a wide portfolio of BN architectures
• Allows for a diversity of network structures to be evaluated – BN performance is dependent on 

the type of structural learning algorithm used

• BN pipeline can evaluate the performance of combinations of up to three different structural 
learning techniques
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• Raw data is generated by the Tracer FIRE system (TF9/TF10)
• ~2 weeks of Windows Sysmon data (2019/2020) consisting of ~18.4 million Sysmon events

• Data preprocessor
• Converted ~ 400GB of JSON data and stored in Elasticsearch NoSQL DB

• Scenario Extractor converted Sysmon events to a collection of labeled (suspect/innocuous) scenarios 
(process trees) based on SME-provided ground truth

• Each scenario feature vector is composed of the number and type of suspicious Sysmon events as 
well as associated process tree statistics (tree depth, scenario duration, etc.)

• 3933 scenarios with at least one suspicious event
• 173 scenarios labeled as malicious (4.4%; imbalanced training set)

• Scenario data used for BN train/test

CLASSIFICATION SYSTEM AND TRAINING DATA6

Tracer FIRE

Scenario extraction & 
labeling

BN Pipeline /
Bayes Server: 

train/test



BAYESIAN NETWORK (BN) TRAINED FROM CYBER DATA

BN developed from TF9/TF10 training data:

• Model is relatively interpretable
• structure and probability tables can be inspected

• Novel/unlabeled data can be used to refine the 
relationships between non-target variables (e.g., the 
non-spoke links in the network at right)

• Model is probabilistic
• Confidence level for each classification output
• Model/output statistical analysis: VOI, Impact Analysis
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IMPACT ANALYSIS:  TRUE VS FALSE POSITIVE SCENARIOS8

• Determine impact of single or paired feature states against the target variable to help resolve ambiguous cases

• Nodes indicate feature names, states, and positive class probability if only this feature’s evidence is observed. 

• Edges indicate positive class probability if the two connected features’ evidence is observed. 

• This model believes that the combination of 0 known company percent with 1 threat 19 count (Execution of exe in Users or 
Temp subdirectory) is the most suspect



BN PIPELINE VS. RANDOM FOREST

• Trained BN using 2/3 of randomized TF9/TF10 data and 
tested with remaining 1/3 of data
• All table metrics are the average cross-validation value (3-

fold)
• Naïve + Cluster BN (NBC) found by optimizing for highest 

F1 score

• BN models using pipeline:
• TAN:  Tree-Augmented Naïve Bayes at 0.5 probability 

threshold
• NBC-1:  Naïve Bayes with Cluster BN at 0.5 probability 

threshold
• NBC-1: Naïve Bayes with Cluster BN at 0.13 probability 

threshold

• Amenable to tuning
• Changing probability threshold for NBC Positive label to 

0.13 results in improved Accuracy, Recall and F1 score, but 
somewhat degraded Precision
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Interpretable/Explainable/Tunable classifier that has comparable 
performance to Random Forest



WHY NOT RANDOM FOREST + LIME/SHAP?

Rudin (2019) [1]:

• It is preferable to use models that are inherently interpretable for making high-stakes 
decisions 

• Any explanation method for a black-box model will almost certainly be inaccurate for 
certain inputs

Smith et al. (2021) [2]:

• LIME and SHAP make strong assumptions of feature independence and linear 
interactions which are frequently inaccurate
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• Potential functionality to be added to the BN pipeline:
• Multi-label (multiple targets to classify) and multi-class (>2 classes per target) classification

• Query Dynamic Bayesian Networks (DBNs) – temporal BNs

• Generate structure from rules and/or network graphs

• Query with probabilistic evidence (i.e., specify nonbinary distribution over feature states)

• Simplify overly complex CPTs via “noisy OR” encoding

• Discriminative structure search algorithm (rewards classification performance, not model fit)

• State-level explainability analysis (which feature values matter most)

• Analysis of difficult (never seen before) and ambiguous (contradictory evidence) cases

FUTURE DIRECTIONS11


