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Motivation

Big picture: realizing efficient quantum emitters of single photons
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Key ingredient for quantum information technologies

Quantum Dot

Rendition of an SPE

Solid-state SPEs — combine optical properties of atoms with scalability

Semiconductor QDs, fluorescent atomic defects, 2D materials, carbon nanotubes

Conduction

Semiconductor QDs:

Quantum confinement in all spatial directions - discrete energy states
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Explored to improve optoelectronic devices - suitable for integration
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Energy levels: bulk vs QD
APS physics (2020); Medium (2019) yJ



State-of-the-art

Aghaeimeibodi et al. (2019)

ITI-V QDs exhibit some of the highest all-around SPE performance*
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PL results from various works

Strain-driven = limited combinations = limited A
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S-K QDs : Efficient SPEs and widely used, but mechanism limits control/tunability

Reduces randomness

Alternative : Instead of self-assembly, QDs could be grown in pre-defined patterns
T No material-choice issue

Lithographic patterning: In-situ etching:
TE BT SRR T e Group III-droplet assisted etching __» Ga, In or Al droplet
s s I‘\ " . § J & i . . . -
A R B g g PP Defect and impurity-free nanopatterning Substrate
AR e i ot High symmetry QDs — ideal for SPEs
.‘_. 5 . ..,“l'llu‘ .-: £ A Ay xRk {F A L} .
g e .~ : \ Even lattice-matched QDs grown r—
L .‘!. ” 1‘ 7 r' l
e R o m Substrate
InAs/GaAs QDs grown on (a) unpatterned and (b) ex-situ patterned substrate X0, other charged species
& op
Charged X \
Pattern controls site, shape, size of the QD ' -
. ! | '\‘ “ | Substrate
Wavelength could be tuned by varying QD material MR WYL _ _
e Schematic showing LDE growth process
Drawback: ex-situ patterning introduces contamination evserst ()
and interface issues Typical PL spectrum for GaAs/AlGaAs LDE QDs

Drawback: Complicated/sensitive growth process
Kiravittaya et al. (2004) 4



Approach
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InAs QDs

\ Nanovoid
A A " '/ e

GaAs (or) InP Substrate

Schematic showing S-K and LDE QD growth

Nanovoids

QD infilling

Possible mechanism for As,-induced etching + QD formation

S-K QDs work well = limited by formation mechanism
QD growth in pre-defined patterns solves S-K issues

In-situ patterning is better, but, LDE 1s a complex growth process

Best way forward:

Use 1n-situ patterning — control over size & shape of QDs

— NO material choice constraints

Alternative patterning/ QD growth process:



Background

O As, reacts aggressively with GaSb surfaces through two reactions:

2GaSbh + As, — 2GaAs + Sb, AH® = —47.6k]/mol (Anton exchangdurface AFM

GaSb + As, — GaAs + AsSb AH® = —33.9k] /mol (Isoelectronic AsSb formation)

o Nanovoid formation observed previously on GaSb surfaces exposed to As, flux — not used for infilling

X-sectional TEM image

Losurdo et al. (2006) ; Huang et al. (2007) 6



Experiment: structural —

Exposed to flux

Procedure:

Etched surface

—/

GaSb smoothing - 300nm

GaSb substrate

GaSb QD infilling

VVYVVVVVVVYVV VY

GaSb substrate

GaSb native oxide desorption: 540°C for 30min
300nm GaSb smoothing layer grown — Sb:Ga = 3 at 505°C
Excess Sb desorbed from surface

Surface exposed to As, — varying flux, times & tempature

/ N

Nanovoid formation Infilling with QDs

Sample cooled down under Sb flux Sb soak — 5min
Migration-enhanced GaSb QD growth
Sample cooled under Sb flux



Initial findings

Prolonged exposure (> 2 min) at high As, fluxes (> 1le-6 Torr) Infilling observed in a relatively low number of nanovoids
—> nanovoid formation

Vertical distances (nm):
« 16.58
¢ 15.21
« 13.72

QD height: 7-8nm

-
0.0 1: Height 2.0 pm

0.0 1: Height

AFM scans of (a) etched nanovoid surface and (b) infilled nanovoid with sectional analysis

Nanovoids show LOW uniformity in size & shape
An extended study is carried out to determine if growth conditions influence:
Nanovoid uniformity, size and shape

Infilling of voids



Structural characteristics ey

Nanovoid etch mechanism highly dependent on As, exposure — both flux and time

. . “QD” dimensions:
Nanovoid dimensions: {3 . Width : ~25nm

- Width : ~40nm - Height : ~3nm
* Height : ~15nm

1X1 pm AFM image of (a) high and (b) low As, (flux and time) etched GaSb surface

High As, = Nanovoids Low As, = “QDs”
High density High density

Non-uniform void sizes and profiles Profiles show similar sizes




Structural characteristics ()

* As,exposure (controlled by flux, time or growth temperature) determines etch mechanism

>

Increasing As, exposure

o In “QD” regime, density can be controlled

o With increasing As,, nanostructures
coalesce before void formation

o For further studies, high-density “QD”

conditions used

10
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Experiment: optical = (4 A

QDs embedded in higher bandgap material (Al 5Ga, sSb) for analyzing optical signature
Also for x-sectional and composition analysis using TEM & SIMS

Procedure:
Uncapped QDs for AFM GaSb native oxide desorption: 540°C for 30min
|:| 300nm GaSb smoothing layer grown — Sb:Ga = 3 at 505°C
Capped QDs for PL 100nm AlysGagsSb barrier layer grown

_ Excess Sb desorbed from surface

Surface exposed to As, - flux, time and temperature adjusted
GaSb smoothing 200nm for QD growth

GaSb substrate 5 min Sb soak
QDs buried 1n a 40nm Alj5Gag sSb layer

QD growth process repeated on the top surface for AFM
measurements.

Schematic showing structure used for optical studies

11



X-sectional analysis using TEM

40 nm

AlGaSb

Schematic showing QDs & surrounding material

HAADF STEM image of QDs and surrounding material

Ga-As component image

12
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Material composition (SIMS & TEM)

Both SIMS and EDS analysis suggest a QD composition of GaAs with low % of Sb

SNL: SAMPLE S2 PCOR-SIMS ™"

C,0,Si,N CONCENTRATION (atoms/cc)
Normalized Counts
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SIMS profile from GaAs(Sb) QD PL sample EDS analysis of GaAs(Sb) QDs and surrounding material
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Optical characteristics

Preliminary optical studies carried out

Extended analysis ongoing including PLL comparison between etched and non-etched GaAs(Sb) samples

PL at 8K with 20uW of 400nm Pump
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Conclusions

Arsenic-induced 1n-situ etching of III-Sb surfaces explored as a QD formation mechanism

Growth conditions for nanovoid formation + QD infilling determined
High As; exposure (controlled by flux, time and temperature) leads to nanovoid formation

Nanovoids (both before and after infilling) show high nonuniformity in size & shape

Low As, exposure results in 3-dimensional nanostructure (QD) formation with As, flux controlling QD density and
size with high uniformity.

Cross-sectional TEM analysis shows spatially separated QDs and coupled with SIMS reveals the composition to be
GaAs(Sb).

Preliminary optical analysis shows a distinct optical signature ~1.55um (8K measurement)

15



Questions? -

Ga-As component image
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