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Motivation

• Solid-state SPEs – combine optical properties of  atoms with scalability
o Semiconductor QDs, fluorescent atomic defects, 2D materials, carbon nanotubes 

Key ingredient for quantum information technologies 

Big picture: realizing efficient quantum emitters of  single photons

• Semiconductor QDs:
o Quantum confinement in all spatial directions  - discrete energy states
o Explored to improve optoelectronic devices  - suitable for integration  

APS physics (2020); Medium (2019)

Rendition of an SPE

Energy levels: bulk vs QD
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State-of-the-art

• Stranski-Krastanov QDs (InAs, InGaAs)

III-V QDs exhibit some of  the highest all-around SPE performance* 

o Strain-driven formation mechanism
o Spans telecom λ range

GaAs (or) InP

InAs QDs

GaAs

InAs QDs

Buckley et al. (2012)

Aghaeimeibodi et al. (2019)

Musial et al. (2019)

• *Drawbacks:
o Presence of  a 2D layer interconnecting QDs
o Self-assembly à limited range and control over shape, size and density 
o Strain-driven à limited combinations à limited λ

X-sectional TEM & schematic showing InAs/GaAs QDs

PL results from various works 
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State-of-the-art

• Lithographic patterning:

S-K QDs : Efficient SPEs and widely used, but mechanism limits control/tunability

o Group III-droplet assisted etching
o Defect and impurity-free nanopatterning
o High symmetry QDs – ideal for SPEs
o Even lattice-matched QDs grown

o Pattern controls site, shape, size of  the QD
o Wavelength could be tuned by varying QD material
o Drawback: ex-situ patterning introduces contamination 

and interface issues  

Alternative : Instead of  self-assembly, QDs could be grown in pre-defined patterns 
Reduces randomness

No material-choice issue

(a) (b)

InAs/GaAs QDs grown on (a) unpatterned and (b) ex-situ patterned substrate

• In-situ etching:

Kiravittaya et al. (2004)
o Drawback: Complicated/sensitive growth process 

Typical PL spectrum for GaAs/AlGaAs LDE QDs

Schematic showing LDE growth process
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Approach

• Best way forward:

GaAs (or) InP

InAs QDs

o S-K QDs work well à limited by formation mechanism
o QD growth in pre-defined patterns solves S-K issues 
o In-situ patterning is better, but, LDE is a complex growth process 

Nanovoid

o Use in-situ patterning – control over size & shape of  QDs

Schematic showing S-K and LDE QD growth

Possible mechanism for As2-induced etching + QD formation 

– NO material choice constraints

o Alternative patterning/ QD growth process:

Arsenic-induced displacement etching of  
antimonide surfaces + infilling 
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Background

2𝐺𝑎𝑆𝑏 + 𝐴𝑠! → 2𝐺𝑎𝐴𝑠 + 𝑆𝑏! Δ𝐻" = −47.6𝑘𝐽/𝑚𝑜𝑙

o As2 reacts aggressively with GaSb surfaces through two reactions: 

𝐺𝑎𝑆𝑏 + 𝐴𝑠! → 𝐺𝑎𝐴𝑠 + 𝐴𝑠𝑆𝑏 Δ𝐻" = −33.9𝑘𝐽/𝑚𝑜𝑙

(Anion exchange)

(Isoelectronic AsSb formation)

o Nanovoid formation observed previously on GaSb surfaces exposed to As2 flux – not used for infilling

Losurdo et al. (2006) ; Huang et al. (2007)

Surface AFM

X-sectional TEM image
AFM image of surface
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Experiment: structural

GaSb substrate

GaSb smoothing – 300nm

Etched surface

Exposed to As2 flux
• Procedure:

o GaSb native oxide desorption: 540℃ for 30min
o 300nm GaSb smoothing layer grown – Sb:Ga = 3 at 505℃
o Excess Sb desorbed from surface
o Surface exposed to As2 – varying flux, times & tempature

Nanovoid formation
o Sample cooled down under Sb flux 

Infilling with QDs

GaSb substrate

o Sb soak – 5min
o Migration-enhanced GaSb QD growth
o Sample cooled under Sb flux

GaSb QD infilling
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Initial findings

o Nanovoids show LOW uniformity  in size & shape 
o An extended study is carried out to determine if  growth conditions influence:
o Nanovoid uniformity, size and shape
o Infilling of  voids

Vertical distances (nm):
• 16.58
• 15.21
• 13.72

• Prolonged exposure (> 2 min) at high As2 fluxes (> 1e-6 Torr) 
à nanovoid formation 

• Infilling observed in a relatively low number of  nanovoids

• Depth: ~15nm
• QD height: 7-8nm

(a) (b)

AFM scans of (a) etched nanovoid surface and (b) infilled nanovoid with sectional analysis



9

Structural characteristics

(b) Low As2 (a) High As2 

“QD” dimensions:
• Width : ~25nm
• Height : ~3nm

Nanovoid dimensions:
• Width : ~40nm
• Height : ~15nm

• Nanovoid etch mechanism highly dependent on As2 exposure – both flux and time

o High As2 à Nanovoids
o High density
o Non-uniform void sizes and profiles

o Low As2 à “QDs”
o High density
o Profiles show similar sizes

1X1 µm AFM image of (a) high and (b) low As2 (flux and time)  etched GaSb surface
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Structural characteristics

• As2 exposure (controlled by flux, time or growth temperature) determines etch mechanism 

o In “QD” regime, density can be controlled
o With increasing As2, nanostructures 

coalesce before void formation
o For further studies, high-density “QD” 

conditions used

1X1 µm AFM image of etched GaSb surface with varying As2 exposure

Increasing As2 exposure
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Experiment: optical

• QDs embedded in higher bandgap material (Al0.5Ga0.5Sb) for analyzing optical signature
• Also for x-sectional and composition analysis using TEM & SIMS

Schematic showing structure used for optical studies

• Procedure:
o GaSb native oxide desorption: 540℃ for 30min
o 300nm GaSb smoothing layer grown – Sb:Ga = 3 at 505℃
o 100nm Al0.5Ga0.5Sb barrier layer grown
o Excess Sb desorbed from surface
o Surface exposed to As2 - flux, time and temperature adjusted 

for QD growth
o 5 min Sb soak
o QDs buried in a 40nm Al0.5Ga0.5Sb layer
o QD growth process repeated on the top surface for  AFM 

measurements.
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X-sectional analysis using TEM

• TEM analysis shows spatially separated 3-dimensional nanostructures with a mostly GaAs(Sb) composition

Schematic showing QDs & surrounding material

Ga-As component image
HAADF STEM image of QDs and surrounding material
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Material composition (SIMS & TEM)

SIMS profile from GaAs(Sb) QD PL sample

• Both SIMS and EDS analysis suggest a QD composition of  GaAs with low % of  Sb

EDS analysis of GaAs(Sb) QDs and surrounding material
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Optical characteristics

• Preliminary optical studies carried out

• Extended analysis ongoing including PL comparison between etched and non-etched GaAs(Sb) samples
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Conclusions

• Arsenic-induced in-situ etching of  III-Sb surfaces explored as a QD formation mechanism

• Growth conditions for nanovoid formation + QD infilling determined
• High As2 exposure (controlled by flux, time and temperature) leads to nanovoid formation
• Nanovoids (both before and after infilling) show high nonuniformity in size & shape

• Low As2 exposure results in 3-dimensional nanostructure (QD) formation with As2 flux controlling QD density and 
size with high uniformity.

• Cross-sectional TEM analysis shows spatially separated QDs and coupled with SIMS reveals the composition to be 
GaAs(Sb). 

• Preliminary optical analysis shows a distinct optical signature ~1.55µm (8K measurement)



16

Questions?

Ga-As component image 


