

Machine learning in the context of inverse, control, and experimental design problems

Sandia
National
Laboratories

Rebekah White[†], John Jakeman[‡], and Bart van Bloemen Waanders[†]

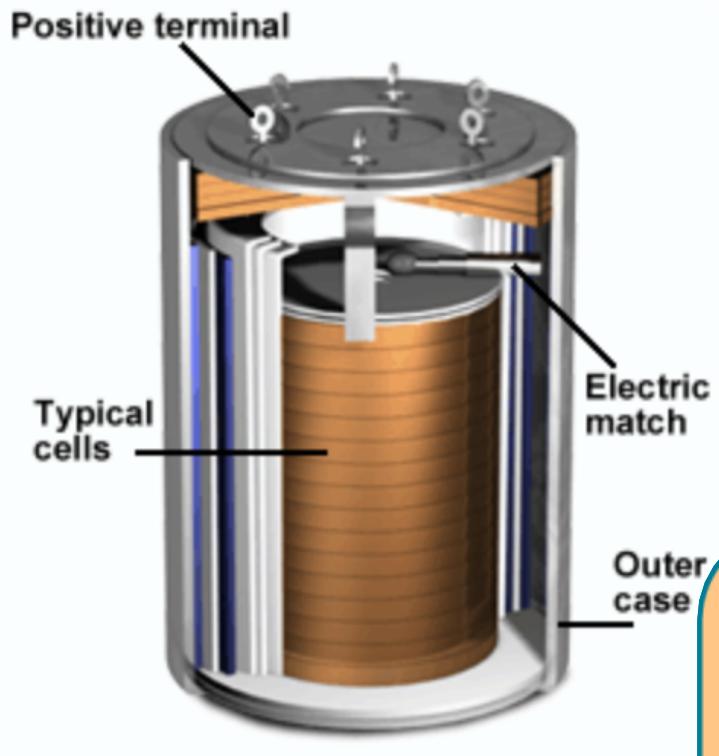
[†] Sandia National Labs, Machine Learning org 1441

[‡] Sandia National Labs, Optimization and Uncertainty Quantification org 1463

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Machine learning in decision making and computational sciences

Digital twin problems

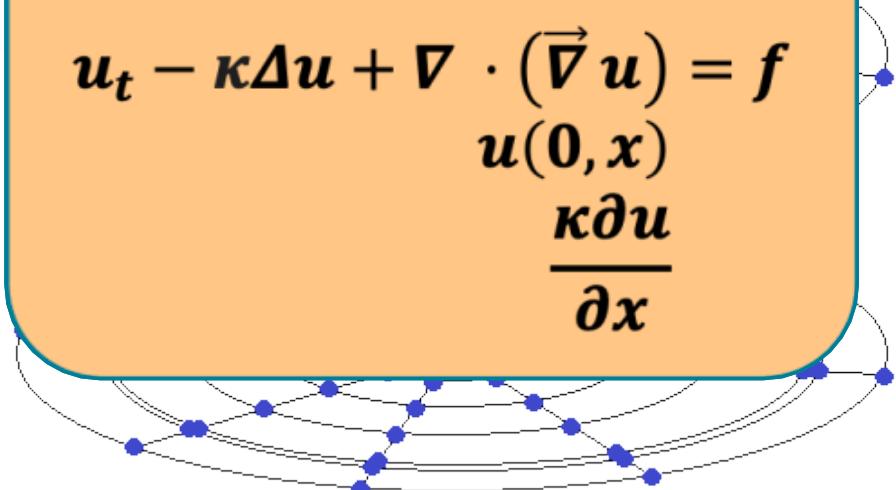


Mathematical representation

Real-world asset

Thermal Energy Model

$$u_t - \kappa \Delta u + \nabla \cdot (\vec{\nabla} u) = f$$
$$u(0, x)$$
$$\frac{\kappa \partial u}{\partial x}$$



Infer properties
about the system
**Digital twin
systems**
Make predictions
about future
scenarios

Decision making

In contrast to
classical ML
problems

To accomplish these goals we need data

Limited data

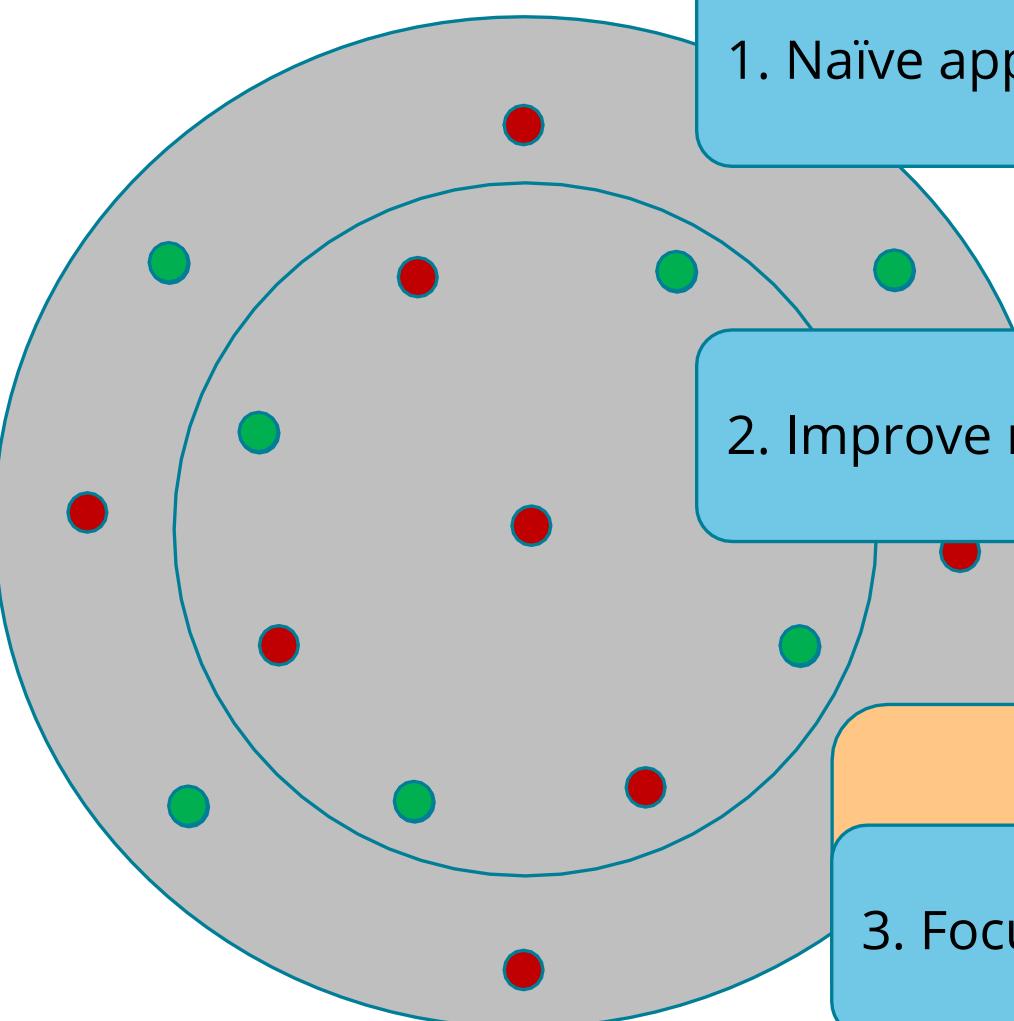
- Indirect measurements
- Limited sensor budget
- Multiple experiments infeasible

Physics constraints

- Complicated multiphysics systems
- Physical interpretability important
- Extrapolation is crucial

Optimal experimental design (OED)

Determine when, where, and how to collect data to maximize information



Sensor locations in battery cell

1. Naïve approach – equal spacing
Expensive
2. Improve model calibration
Indirect
3. Focus directly on our goals
Our approach

Bayesian optimal experimental design

Measurement Data

$$\mathbf{y} = f(\theta) + \boldsymbol{\eta}$$

- θ - model parameters
- f - model
- $\boldsymbol{\eta} \sim \mathcal{N}(0, \boldsymbol{\Gamma})$ - Noise

Goal: estimate model parameters

$$\pi(\theta | \mathbf{y}) \propto \pi(\mathbf{y} | \theta) \pi_{\text{pri}}(\theta)$$

likelihood prior

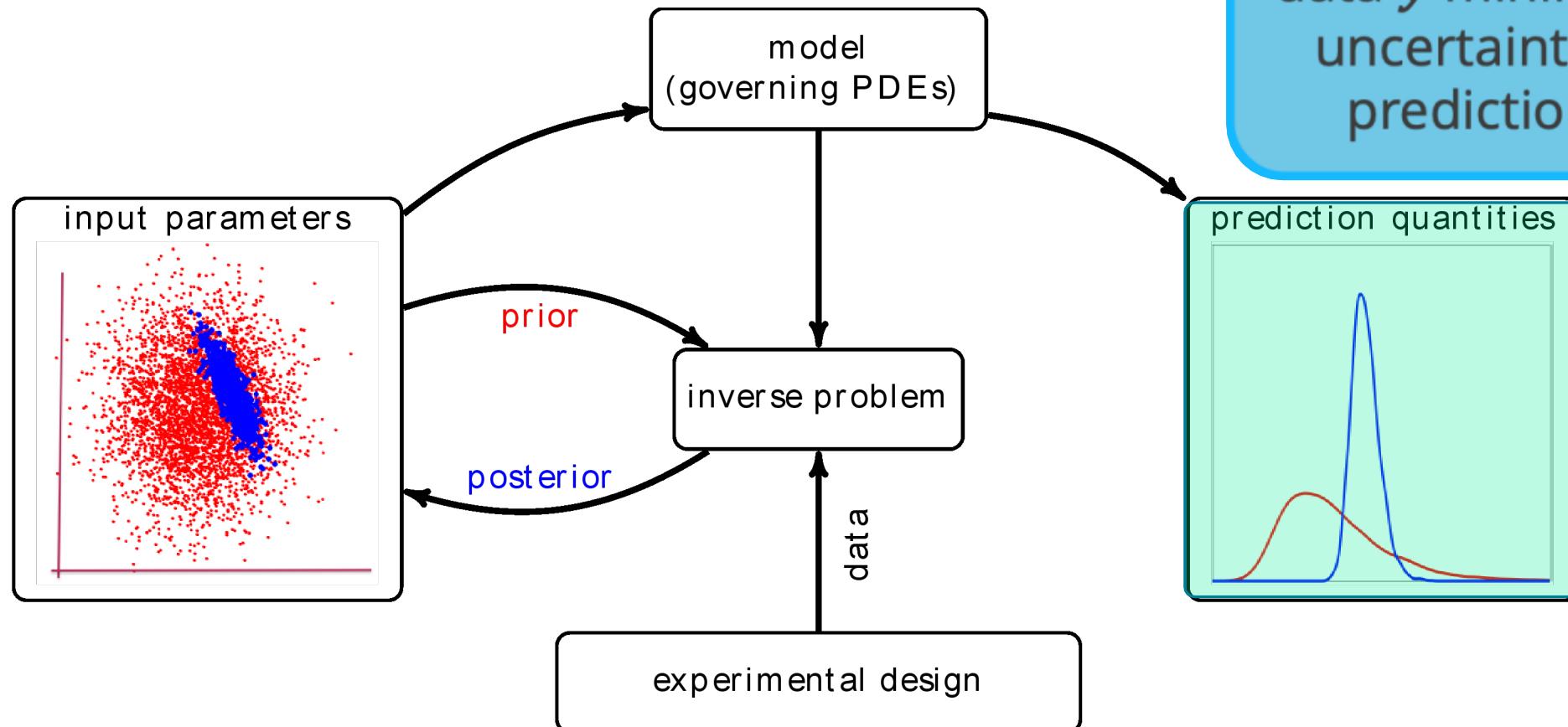
$$\frac{1}{2} \|\mathbf{f}(\theta) - \mathbf{y}\|_{\boldsymbol{\Gamma}}^2 \Big)$$

Mathematical Model

Optimization
constrained by an
inverse problem
constrained by a **PDE**

Model – often expensive to compute partial differential equations PDEs

Goal-oriented Bayesian OED



Determine what data y minimizes uncertainty in predictions

Figure: Overview of Bayesian Optimal Experimental design ‡

[†] A. Alexanderian, A. Saibaba, and A. Attia. Goal-oriented optimal design of experiments for large-scale Bayesian inverse problems. *Inverse Problems*, 2017

‡ A. Alexanderian. Optimal experimental design for Bayesian inverse problems governed by PDEs: A review. 2020

Design of sensor placement problem

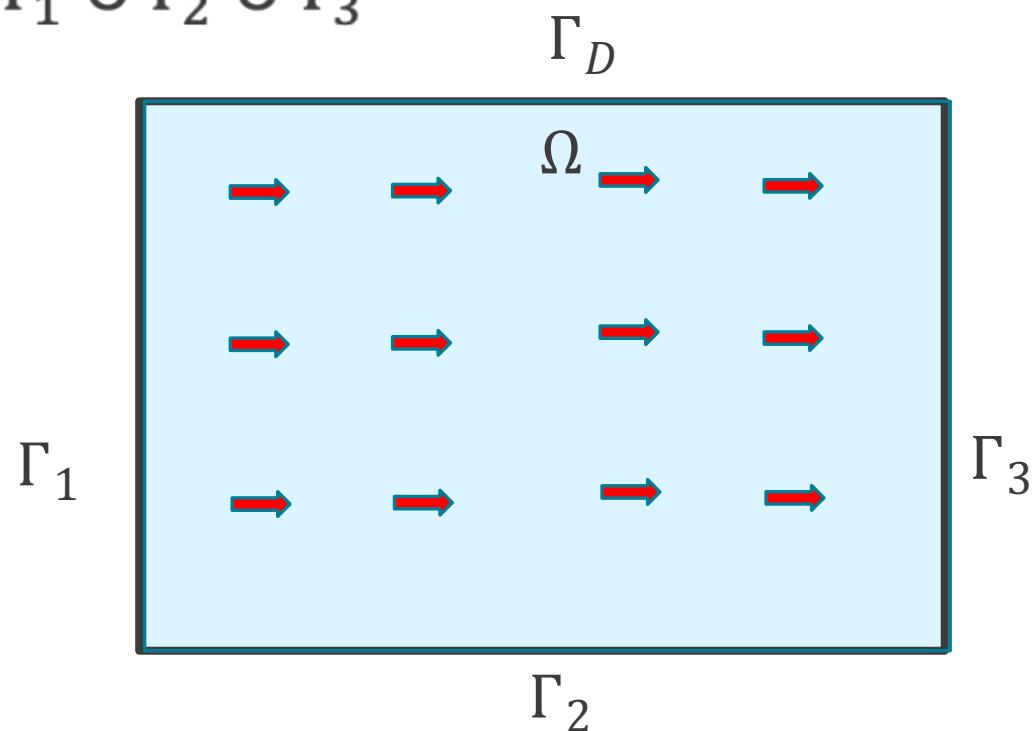
2D stationary advection-diffusion

$$\begin{aligned}
 -\nabla \cdot (a(\mathbf{x}, \theta) \nabla u) + \underline{b \nabla u} &= f, & \text{in } \Omega &= [0, 1] \cup [0, 1] \\
 u(\mathbf{x}) &= 0, & \text{on } \Gamma_D \\
 \nabla u(\mathbf{x}) &= 0, & \text{on } \Gamma_N &= \Gamma_1 \cup \Gamma_2 \cup \Gamma_3
 \end{aligned}$$

Source

$$f = \alpha \exp \left[-\frac{1}{\beta^2} \|\mathbf{x} - \mathbf{x}_0\|_2^2 \right]$$

- $\alpha = 1$
- $\beta = 0.1$
- $\mathbf{x}_0 = [0.25, 0.75]$



Design of sensor placement problem

2D stationary advection-diffusion

$$-\nabla \cdot (a(\mathbf{x}, \boldsymbol{\theta}) \nabla u) + b \nabla u = f, \quad \text{in } \Omega = [0, 1]$$

$$u(\mathbf{x}) = 0, \quad \text{on } \Gamma_D$$

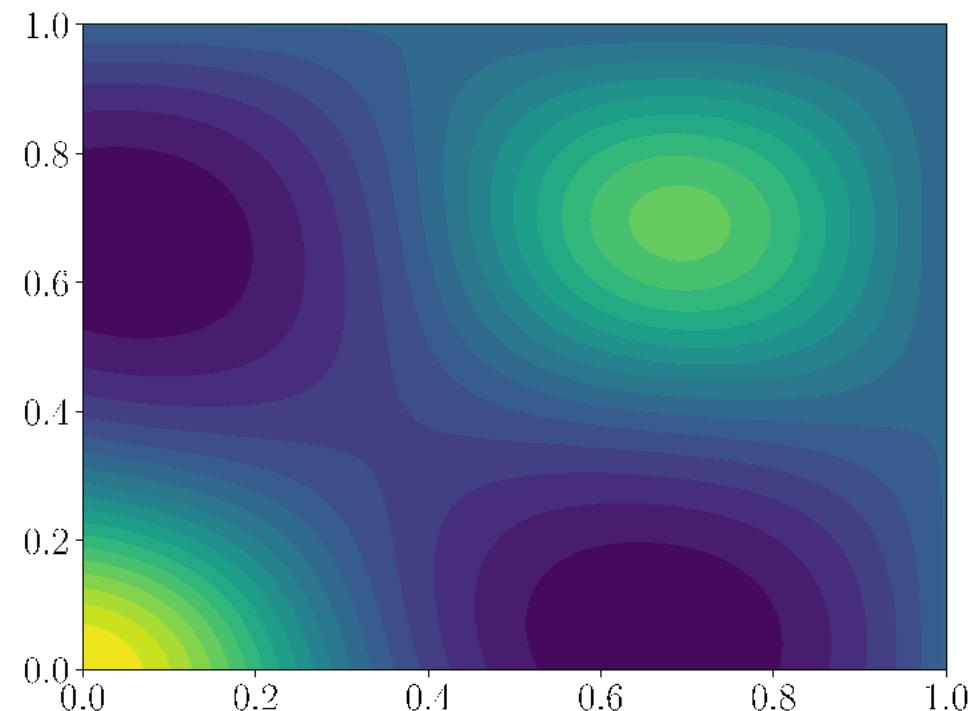
$$\nabla u(\mathbf{x}) = 0, \quad \text{on } \Gamma_N = \Gamma_1 \cup \Gamma_2 \cup \Gamma_3$$

Model is
nonlinear in
parameters

Diffusion

$$a(\mathbf{x}, \boldsymbol{\theta}) = \exp[\theta_1 \sin(x_1 \pi) \sin(x_2 \pi) + \theta_2 \cos(3/2 x_1 \pi) \cos(3/2 x_2 \pi)]$$

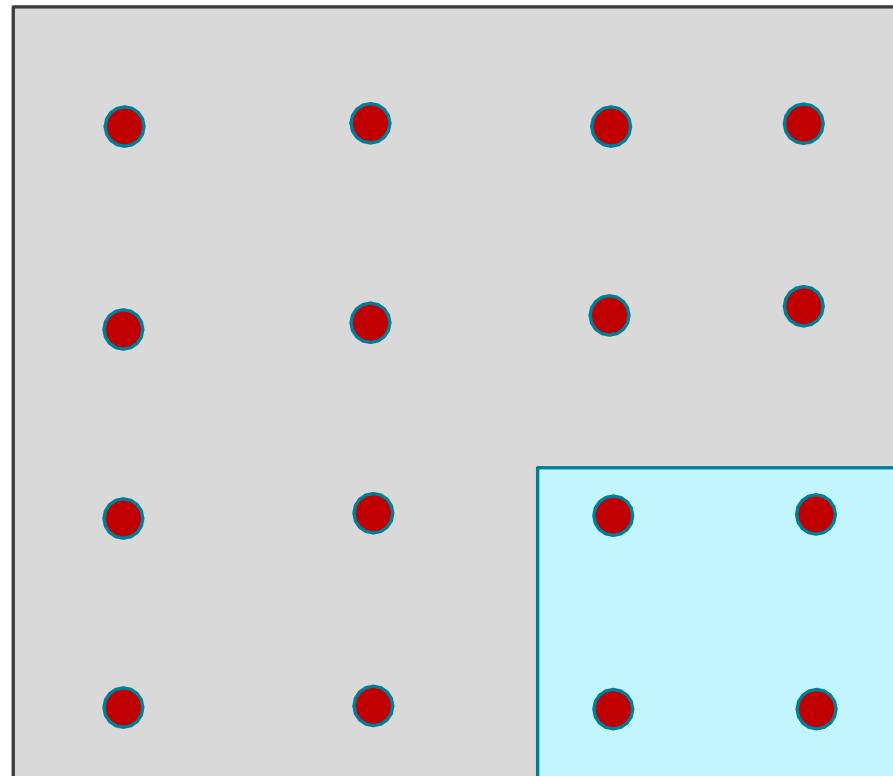
$$\boldsymbol{\theta} = [\theta_1, \theta_2] \in \mathbb{R}^2$$



Optimal experimental design problem

Where to place sensors to measure concentration to maximize information

Predictions



Design Criterion

$$\psi(\xi, y, \theta) = \text{Var}(u(\theta, \xi)) \quad \theta \sim \pi(\theta | y, \xi)$$

Penalized uncertainty in our prediction directly

Figure: Sensor locations on a 2D domain measuring contaminant

Goal

$$\xi^* = \min_{\xi} U(\xi)$$

Recall

$$\pi(\mathbf{y} | \theta) \propto \exp\left(-\frac{1}{2} \|\mathbf{f}(\theta) - \mathbf{y}\|_F^2\right)$$

Where

$$U(\xi) = E_{\theta} E_{\mathbf{y}} [\psi(\xi, \mathbf{y}, \theta)]$$

$$\theta \sim \pi_{\text{pri}}(\theta)$$

$$\mathbf{y} \sim \pi(\mathbf{y} | \theta)$$

Evaluating objective function
requires many evaluations of the
**expensive-to-compute
model**

One area where **ML surrogates** can
be useful

Possible parameter-to-observable map surrogates

Polynomial chaos expansions

- Represents random variables in terms of polynomial functions

Neural networks

- Involves multiple hidden layers in a neural network

Operator inference

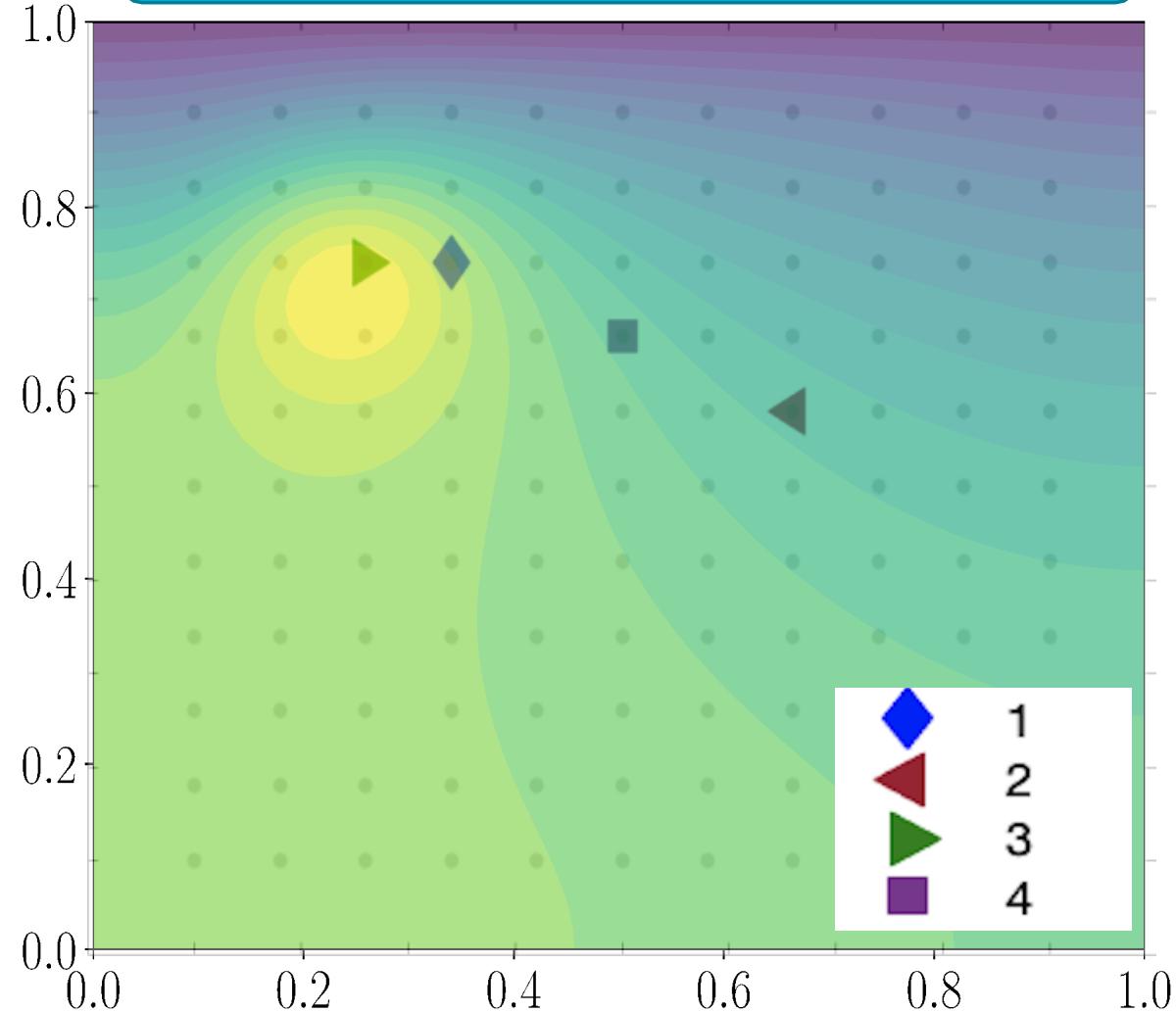
- Linear regression to determine a reduced order model that maintains structure – physical constraints

Gaussian processes

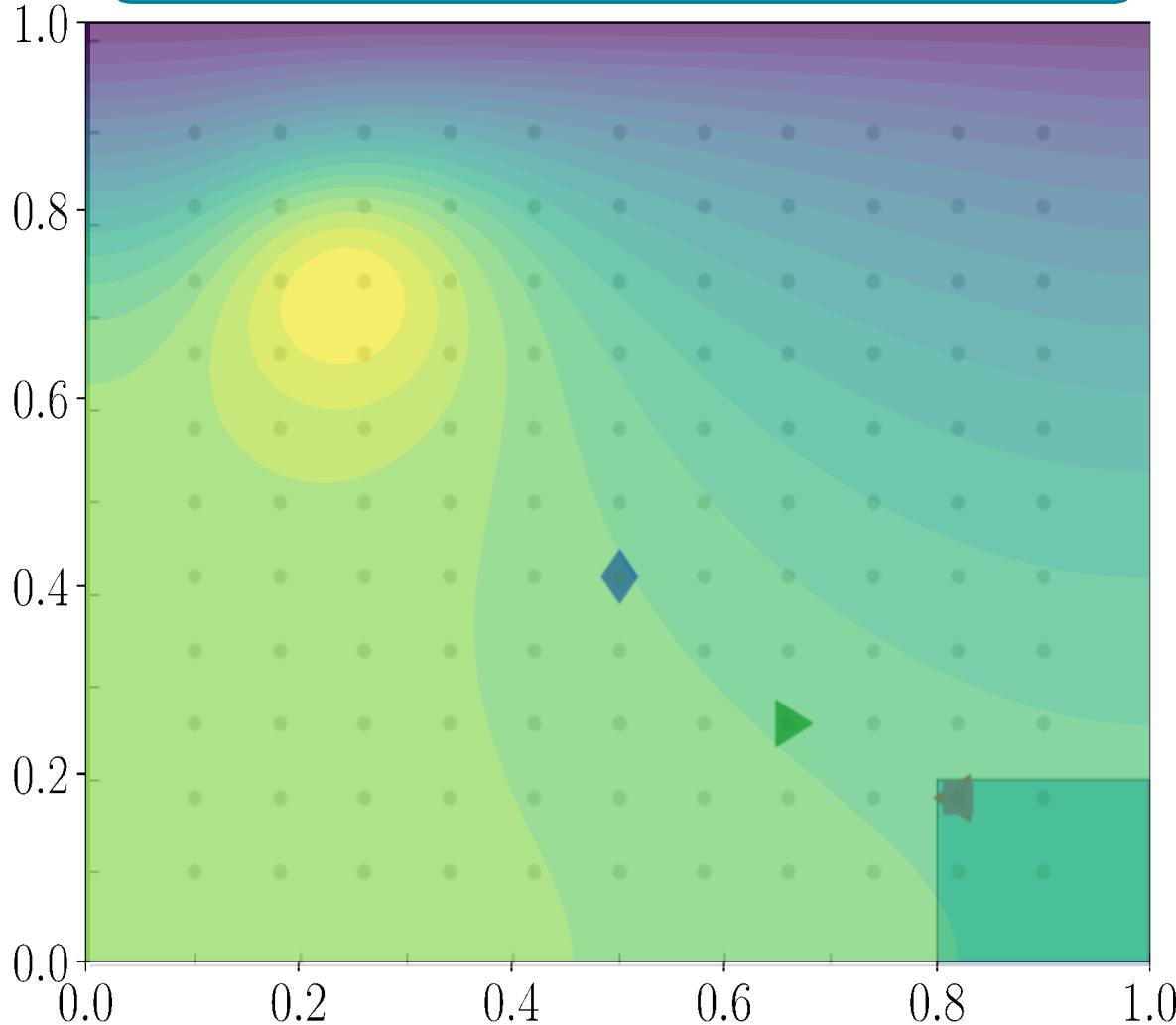
- Models random processes using Gaussian random variables

Benefits of goal-oriented approaches

OED for inverse problems

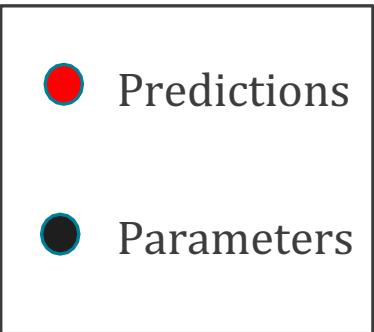
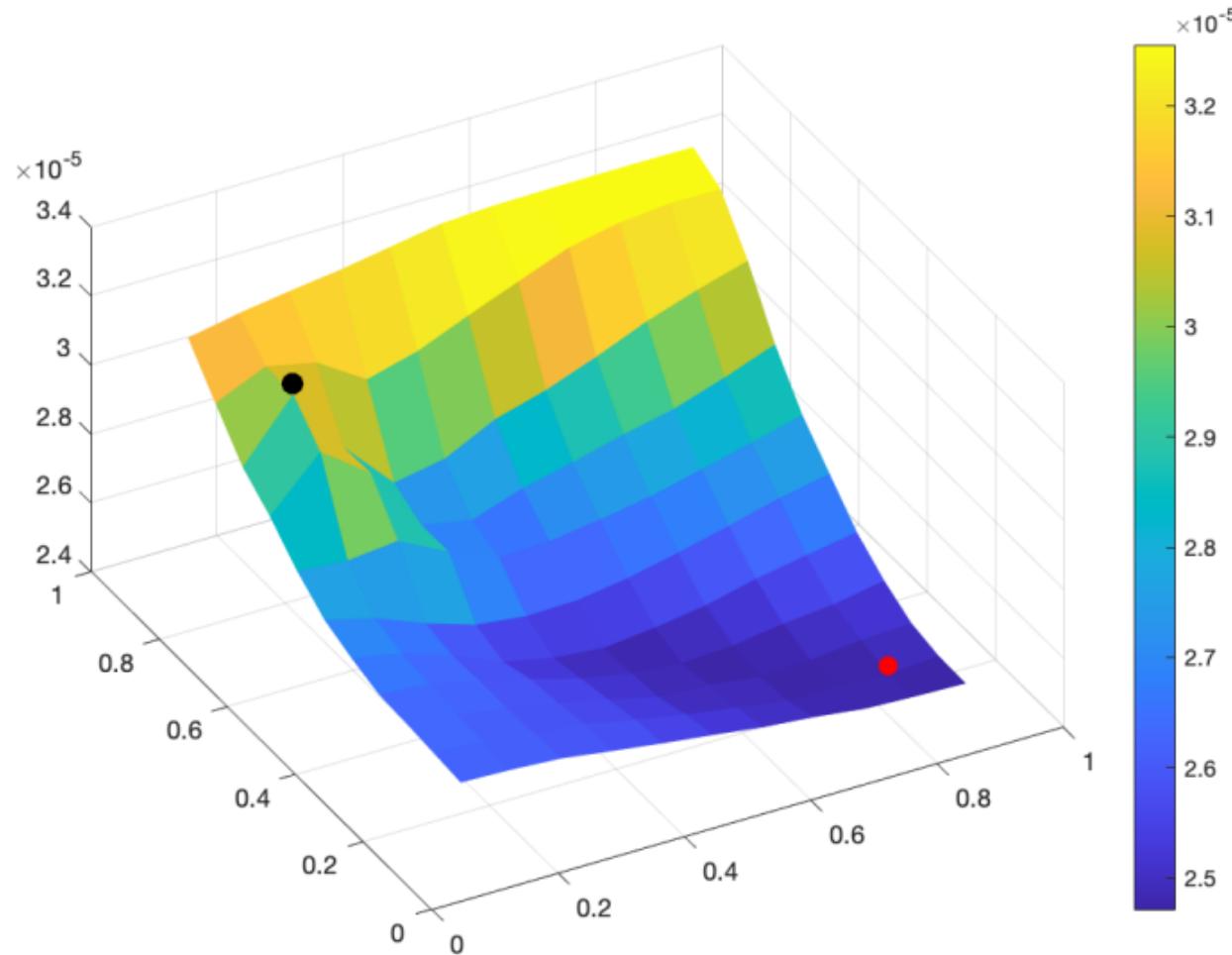


OED for prediction



Benefits of goal-oriented approaches

Uncertainty in concentration prediction



Focusing directly on digital twin **goals improves experimental designs**

OED provides one way to maximize the information we **learn** from **data**