This paper describes objective technical results and analysis. Any subiective views or opinions that mightibelexpressediin SAND2022-8937C
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States'Government.

National
Laboratories

Machine learning in the context
of inverse, control, and
experimental design problems

Rebekah White', John Jakeman®*, and Bart van
Bloemen Waanderst

©ENERGY NISH
B e
Sandia National Laboratories is a
multimission laboratory managed
and operated by National Technology
& Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of
Honeywell International Inc., for the
U.S. Department of Energy’s National
Nuclear Security Administration under
contract DE-NA0003525.

T Sandia National Labs, Machine Learning org 1441

+ Sandia National Labs, Optimization and Uncertainty Quantification org 1463

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering [SolutionsfofiSandia, LLC,a
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administrationfunderfcontract'DE-| NA0003525



Machine
learning in
decision

making and
computational
sciences

Digital twin problems

Positive terminal

Mathematical
representation

Real-world asset

Electric
match

?:'t:rﬂl'hermal Energy ModeI\

u—kAu+V -(Vu)=f
u(0,x)
Kdu




Infer properties
about the system

Digital twin

SM&E MM tions
about future
scenarios

Decision making

{To accomplish these goals we need data

o

= |ndirect
measurements

= Limited sensor budget

= Multiple experiments
infeasible

= Complicated
multiphysics systems

= Physical interpretability
important

= Extrapolation is
crucial
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s | Bayesian optimal experimental design

Measurement Data Goal: estimate model parameters
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Figure: Overview of Bayesian Optimal Experimental design ¥ I
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; I Design of sensor placement problem

2D stationary advection-diffusion
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| Model is
-V - (a(x,0)Vu) + bVu = f, inQQ=1[0,1 nonlinear in
parameters
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o | Optimal experimental design problem

Design Criterion

Y(E,y,0) =Var(u(8,$)) 6~m(0ly,¢)
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Figure: Sensor locations on a 2D domain

measuring contaminant




o 1 OED objective function

Goal Recall
* : 1
£ = minU(E) n(y16)  exp (-3 I£(6) - yl?)
Where
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0 ~ Tpri 6) One area where ML surrogates can
be useful
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11 | Possible parameter-to-observable map surrogates

Polynomial chaos expansions Neural networks
= Represents random variables in terms of = |nvolves multiple hidden layers in a neural
polynomial functions network
Operator inference Gaussian processes

= Models random processes using Gaussian

= Linear regression to determine a reduced _
random variables

order model that maintains structure -
physical constraints
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13 | Benefits of goal-oriented approaches

Uncertainty in concentration prediction / \
5 Focusing directly
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