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SNL LDRD Project:
Analysis of Neural Networks as Random Dynamical Systems

Despite all the success, there are many
recognized challenges and unknowns in neural network behavior

Generalization / predictability ) Confidence assessment
Physical insight / interpretation &= Robustness to adversarial attacks
Take advantage of ‘continuous’ limit Probabilistic viewpoint opens even

of residual neural networks. I more opportunities

Neural ODEs Probabilistic NN



2 | Road to Trusted Al

Arguably, the two most important hurdles along the way

A
Goals: Generalization / predictability Confidence assessment

Tools: Neural ODEs / ResNets Probabilistic NN

Take advantage of legacy knowledge in ODEs and UQ to achieve

* Improved architectures « Confidence assessment

« Generalizable models « Robustnhess to noise



? ‘ Main building block: ResNets

state  weights

Neural Networks (NNs) layer-to-layer function ht——l = F(ht, 9) ‘
[ Residual NN: learn the residual, not the state ht—l—l — ht -+ F(ht; (9) J |

Now, take the limit of infinite layers

dh(t)

o = F(h(t),0) ¢ e e - .-




4 ‘

Focus on: ResNet and NODE in a regression setting

(supervised ML)

ResNet (discrete)

X1 =x+ ago(Wyxo + bg)

Xnt+1 = Xp T+ ana(ann + bn)

.

Y =x-1ta10(Wi_1x1 1+ by_q)

X =X
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Neural ODE (continuous)

dx

— = o(W(t)x + b(t))

dt

x(0) =x

N B A

x(T)=1y

Yy = Xt
Output



5 ‘ResNets regularize loss landscape compared to MLPS

ResNets (learning the layer diff.) |
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¢ | Weight parameterization as a regularization tool,

inspired by ODEs

[ ResNet: Xn+1 = Xp T ana(ann + bn)]

Training for weight matrices Wy, W4, ...

Heavily overparameterized,
does not generalize well

Parameterize W(t; &) and train for a’s.

Parameterization of weight functions
reduces capacity and
improves generalization

X = X

Input

t=0

Business
as usual

S 7
v

Dialdown —

complexity

- NonPar W(t; a)

=Wy /T

Cubic W(t; a)

= at® + Bt*+..

Linear W(t; a)
=at+f



7 . . . . . .
Weight parameterization improves generalization
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GG, MSE(Training)-MSE(Testing)
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Overparametrization Ratio, Nygn/Ntm

Weight Parameterization

Generalization Gap correlates with
overparameterization

Weight-parameterized ResNets
reduce Generalization Gap

Each dot is a training run with
varying weight parameterization
functions



* | Probabilistic Learning: Bayesian NN

* Conventional NN: training for deterministic weight matrices Wy, W4, ...

* Probabilistic approach: training for probability distributions p(Wy), p(W 1), ...

* Three classes of options:

Full Bayesian wmmmms)> Approximate Bayesian mmmm): Ensemble methods

» Markov chain Monte Carlo (W\CMC) > Variational methods > Heuristic, but works

. Typ]ca[[y’ infeasible for . Practically feasible, but many e __ but works best for
overparameterized NNs hyperparameters to tune

complex models

- With weight parameterization * Typically underestimates . Deep ensembles, QBC...
loss functions are better behaved extrapolative predictions
(lower-dimensional, fewer symmetries), * Many recent papers
hence MCMC path more feasible viewing deep ensembles

as Bayesian approximation



’ ‘ QUINN: Quantifying Uncertainties in NN

Deterministic Probabilistic

ugnet = MCMC_NN(nnet)

Usage: mlp

class MCMC_NN(QUiNNBase):
def __init__(self, nnmodule, verbose=True):
super (MCMC_NN, self).__init__(nnmodule)
self.verbose = verbose

ugnet = VI_NN(nnet) ugnet = Ens__NN(nnet, nenS:nn]c)

class VI_NN(QUiNNBase) :
def __init__ (self, nnmodule, verbose=False):
super(VI_NN, self).__init__(nnmodule)
self.bmodel = BNet(nnmodule)
self.verbose = verbose

class Ens_NN(QUiNNBase):
def __init_ (self, nnmodule, nens=1, verbose=False):
super(Ens_NN, self).__init__(nnmodule)
self.verbose = verbose
self.nens = nens

Option 1: MCMC Option 2: Variational Inference Option 3: Ensembling

mcmc vi ens
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10 ‘ APPS:  Multiple applications are informing the development of foundational research
* None of these applications have been previously exposed to NN prediction
uncertainties, particularly in the context of ResNets and weight parameterization

E3SM Vegetation Dynamicﬁ / FitSNAP Entropy Dataset\ / CO-on-Pt(111) Adsorbate\

e 15 input parameters * 30 input bases  6inputd.o.f.
e 10 static output Qols * 1 output (Energy/Force/Stress)| | * 1 output (Energy)
e 2K training simulations e 20K training DFT simulations e 10K training DFT simulations

(E3SM

Energy Exascale
Earth System Model

Exascale Catalytic Chemistry
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11
Summary

* Focus on ResNets and draw inspiration from ODEs
* ResNets regularize the learning problem, smoother loss surface

 Weight parameterization allows further regularization

* Probabilistic approaches more feasible with weight-parameterized ResNets

* Need to find sweet spot between empirical to fully Bayesian, and ....

... conventional mean-field variation inference isn’t that.



Extra Materials



Analysis of Neural Networks as Random Dynamical Systems

Neural ODEs Probabilistic NN

\ /

PNODEs

|
' ! !

Dynamical Analysis Regularization Stability
« Singular perturbation « Random field « Robustness with noise
« Stiffness parameterization of weights - Eigenvalue structure
* Model reduction » Enforce structure: under uncertainty
* Non-local interactions smoothness, sparsity, low-rank

Generalizable model; improved architecture; confidence assessment; robustness to noise



‘ Foundational capabilities impacting multiple applications

Predictive capability of Neural Networks (NNs) hinges on generalization
(ability to predict well outside training data).
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[ Regularization of NNs as a way to achieve generalization. ]

N7
v

N o )
Vv Stiffness Penalization v Climate Land Modeling
v Weight Parameterization | mmmss) |V Catalytic Chemistry
licti : v Materials Science
Q/ Probabilistic Weights y N Y,

Methods Applications



DTO vs OTD

ResNet NODE

dx
Xnt1 = Xp + @no(Wypxy, + by,) E = o(W(t)x + b(t))

Neural ODE discretized using explicit Euler and ResNet
[Forward equivalence:]

produce identical outputs choosing time step: At = %,
a,: =At, W,: = W(ndt) and b,,: = b(nAt) for all n.

Consider W(t) = W and b = 0:

[Backward not so much: ] Discretized Neural ODE with adjoint method:
Gradient computations differ! Vloss = 2((1 + 6t W)tx — y)(1 + 6¢ W)x
ResNet with backpropagation:

Vioss = 2((1 + 6t W)t x —y)(1 + 6t ="

« Gradients converge as L — oo but differences can be large for small L,
« Optimize then discretize (adjoint method) #+ discretize then optimize (backpropagation).



Prior Work on Probabilistic NN

« Probabilistic NN have been around since 90s [MacKay, 1992; Neal, 1997]

Full probabilistic treatment was infeasible back then (and still is, generally)

Recent work showed avenues via variational methods with clever tricks:

Bayes by Backprop [Blundell, 2015]; Probabilistic backprop [Hernandez-Lobato 2015]

Ghahramani, “Probabilistic Machine Learning and Artificial Intelligence”. Nature, 2015

e “Nearly all approaches to probabilistic programming are Bayesian since

»

it is hard to create other coherent frameworks for automated reasoning about uncertainty

Industry 7s catching up: Bayesflow at Google, infer.NET at Microsoft, Uber has shown interest

Still not industry-standard: expensive, not well understood.



