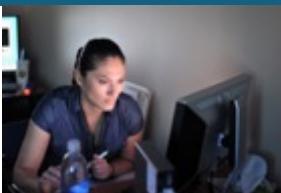
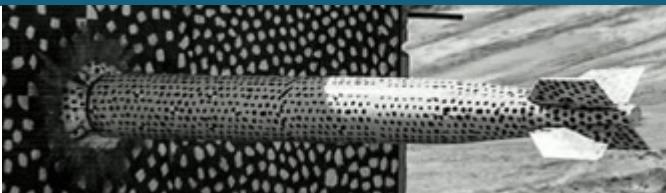


Sandia
National
Laboratories

Training and Generalization of Residual Neural Networks as Discrete Analogues of Neural ODEs



Khachik Sargsyan

SNL : Joshua Hudson, Oscar Diaz-Ibarra, Marta D'Elia, Habib Najm

Emory U : Lars Ruthotto, Haley Rosso

July 26, 2022

MLDL Workshop

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Despite all the success, there are many recognized challenges and unknowns in neural network behavior

Generalization / predictability

Physical insight / interpretation

Confidence assessment

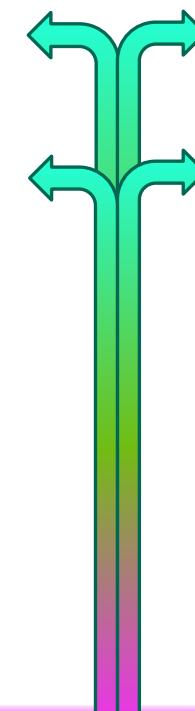
Robustness to adversarial attacks

Take advantage of ‘continuous’ limit of residual neural networks.

Neural ODEs

Probabilistic viewpoint opens even more opportunities

Probabilistic NN



Arguably, the two most important hurdles along the way

Goals:

Generalization / predictability

Confidence assessment

Tools:

Neural ODEs / ResNets

Probabilistic NN

Take advantage of legacy knowledge in ODEs and UQ to achieve

- Improved architectures
- Generalizable models
- Confidence assessment
- Robustness to noise

Main building block: ResNets

Neural Networks (NNs) layer-to-layer function

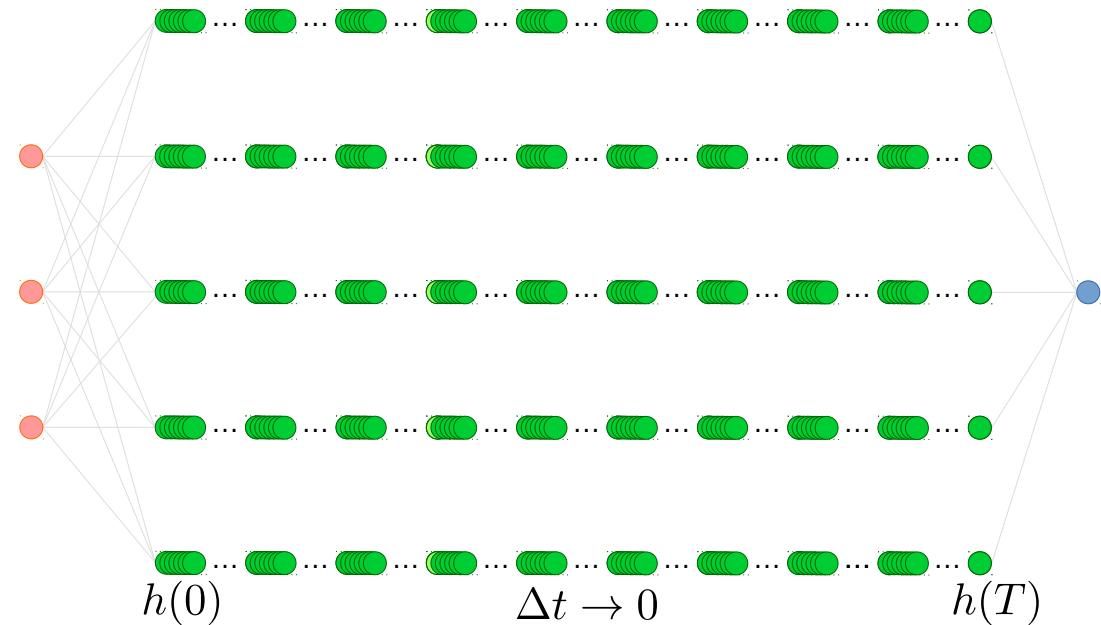
$$h_{t+1} = F(h_t, \theta)$$

Residual NN: learn the residual, not the state

$$h_{t+1} = h_t + F(h_t, \theta)$$

Now, take the limit of infinite layers

$$\frac{dh(t)}{dt} = F(h(t), \theta)$$



Focus on: ResNet and NODE in a regression setting (supervised ML)

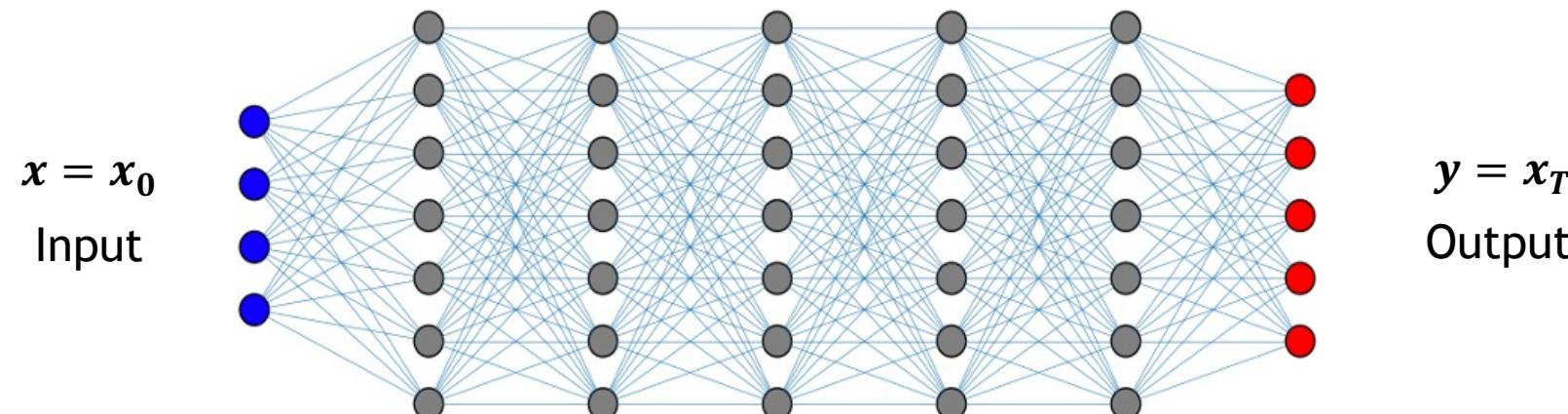
ResNet (discrete)

$$\left\{ \begin{array}{l} x_1 = \mathbf{x} + \alpha_0 \sigma(W_0 x_0 + b_0) \\ \vdots \\ x_{n+1} = x_n + \alpha_n \sigma(W_n x_n + b_n) \\ \vdots \\ \mathbf{y} = x_{L-1} + \alpha_{L-1} \sigma(W_{L-1} x_{L-1} + b_{L-1}) \end{array} \right.$$

Neural ODE (continuous)

$$\frac{dx}{dt} = \sigma(W(t)x + b(t))$$

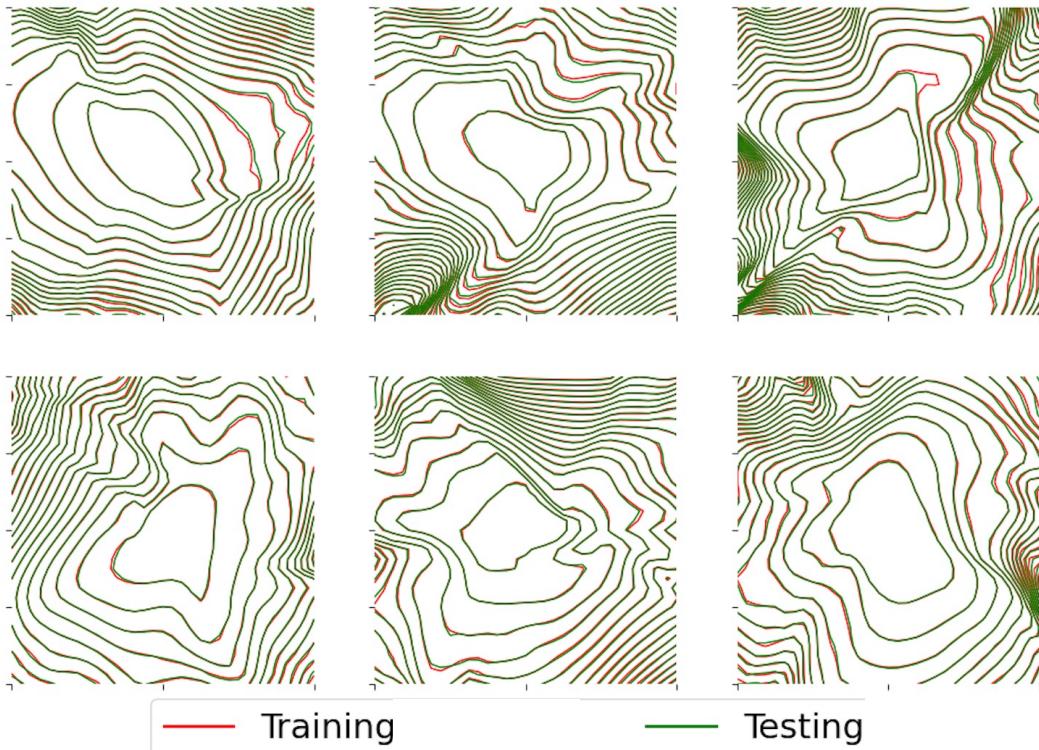
$$x(0) = \mathbf{x} \quad x(T) = \mathbf{y}$$



ResNets regularize loss landscape compared to MLPs

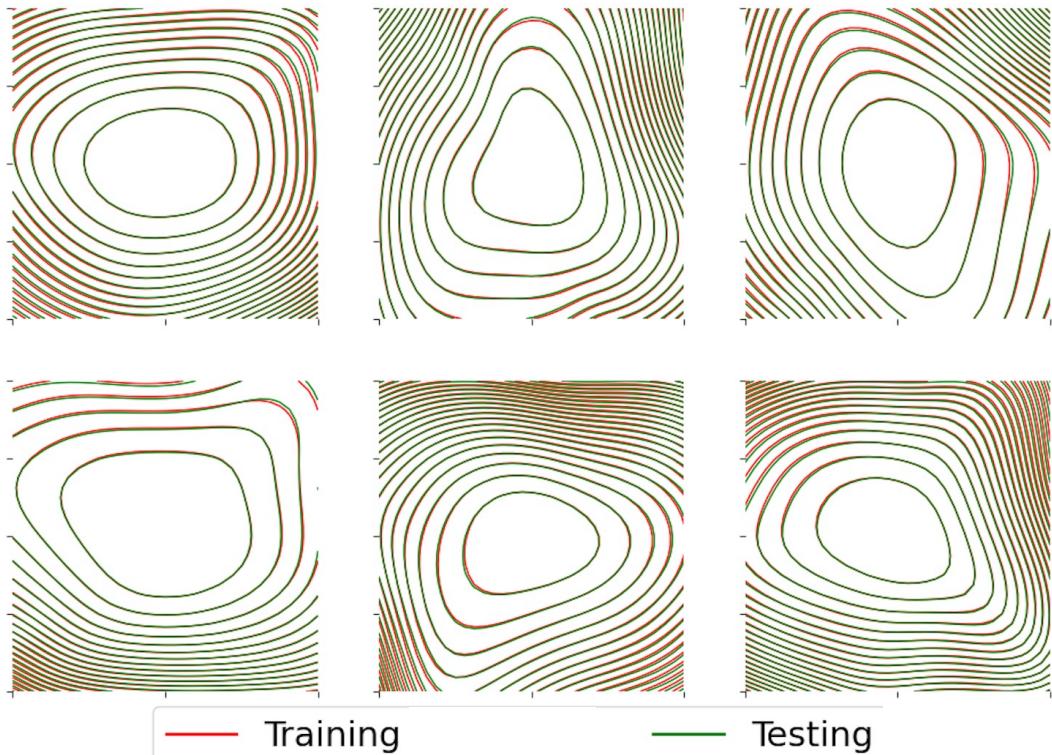
$$\text{MLP NN: } x_{n+1} = \sigma(W_n x_n + b_n)$$

Multilayer Perceptron (learning the layer)



$$\text{ResNet: } x_{n+1} = x_n + \alpha_n \sigma(W_n x_n + b_n)$$

ResNets (learning the layer diff.)



Weight parameterization as a regularization tool, inspired by ODEs

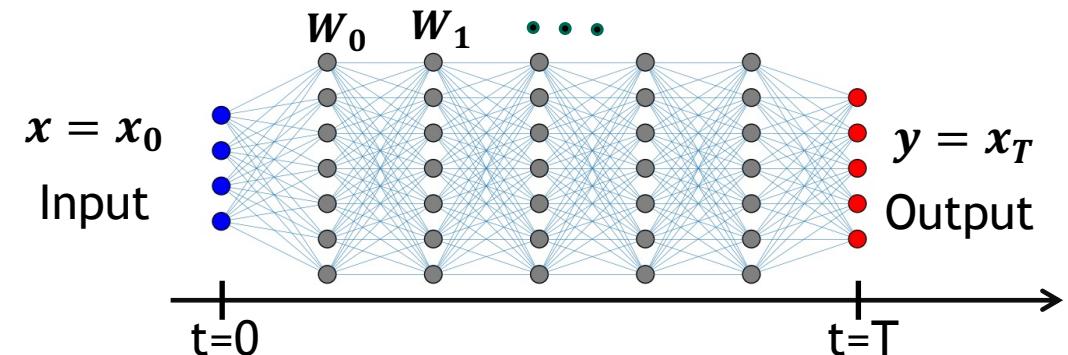
ResNet: $x_{n+1} = x_n + \alpha_n \sigma(W_n x_n + b_n)$

Training for weight matrices W_0, W_1, \dots

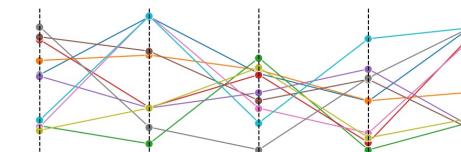
Heavily overparameterized,
does not generalize well

Parameterize $W(t; \alpha)$ and train for α 's.

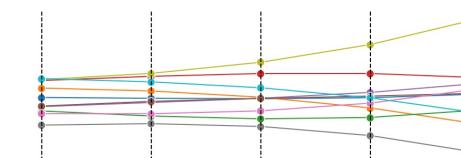
Parameterization of weight functions
reduces capacity and
improves generalization



Business
as usual

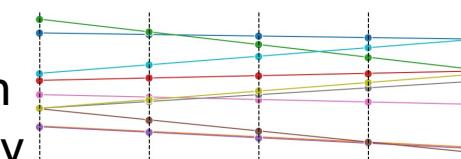


NonPar $W(t; \alpha) = W_{tL/T}$



Cubic $W(t; \alpha) = \alpha t^3 + \beta t^2 + ..$

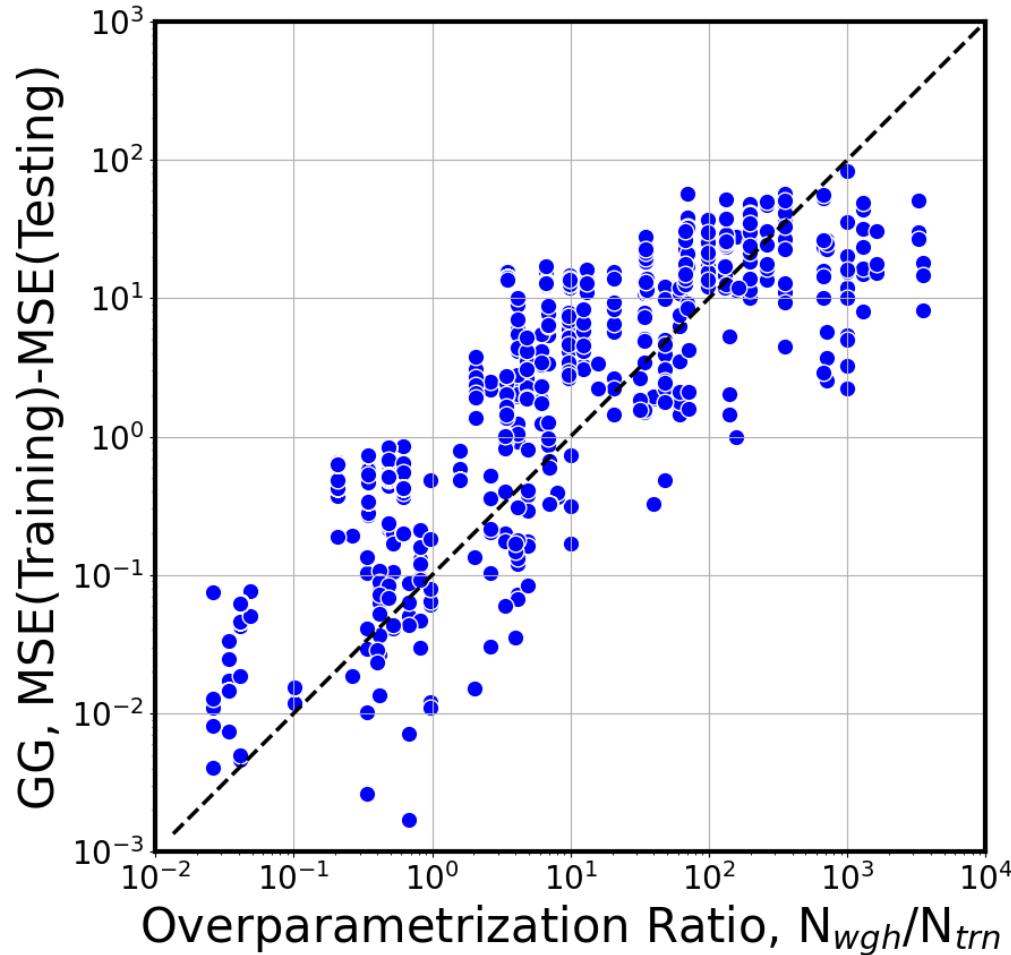
Dial down
complexity



Linear $W(t; \alpha) = \alpha t + \beta$

Weight parameterization improves generalization

Better Generalization



- Generalization Gap correlates with overparameterization
- Weight-parameterized ResNets reduce Generalization Gap

Each dot is a training run with varying weight parameterization functions

← Weight Parameterization

- Conventional NN: training for deterministic weight matrices W_0, W_1, \dots
- Probabilistic approach: training for probability distributions $p(W_0), p(W_1), \dots$
- Three classes of options:

Full Bayesian Approximate Bayesian Ensemble methods

➤ Markov chain Monte Carlo (MCMC)	➤ Variational methods	➤ Heuristic, but works
• Typically, infeasible for overparameterized NNs	• Practically feasible, but many hyperparameters to tune	• ... but works best for complex models
• With weight parameterization loss functions are better behaved (lower-dimensional, fewer symmetries), hence MCMC path more feasible	• Typically underestimates extrapolative predictions	• Deep ensembles, QBC...
		• Many recent papers viewing deep ensembles as Bayesian approximation

QUINN: Quantifying Uncertainties in NN

Deterministic

torch.nn.module

Probabilistic

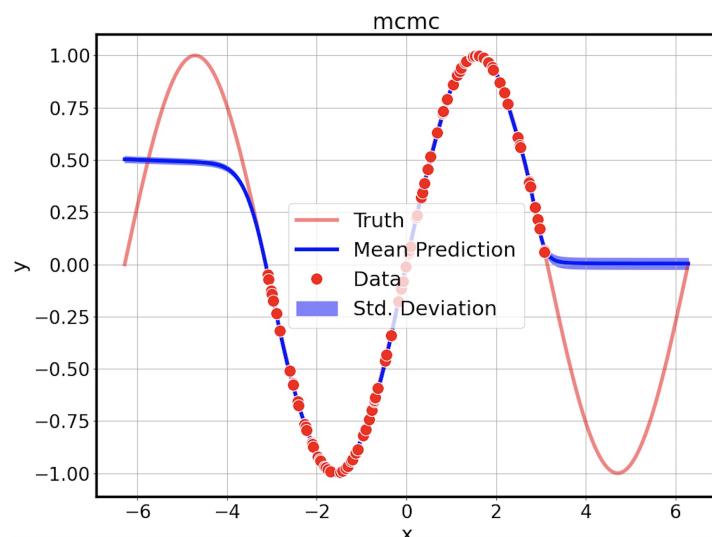
wrapper(torch.nn.module)

Usage: →

`uqnet = MCMC_NN(nnet)`

```
class MCMC_NN(QuiNNBase):
    def __init__(self, nnmodule, verbose=True):
        super(MCMC_NN, self).__init__(nnmodule)
        self.verbose = verbose
```

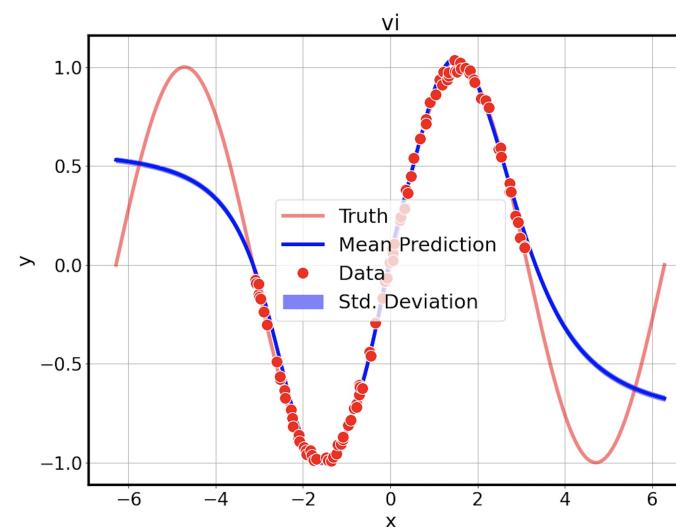
Option 1: MCMC



`uqnet = VI_NN(nnet)`

```
class VI_NN(QuiNNBase):
    def __init__(self, nnmodule, verbose=False):
        super(VI_NN, self).__init__(nnmodule)
        self.bmodel = BNet(nnmodule)
        self.verbose = verbose
```

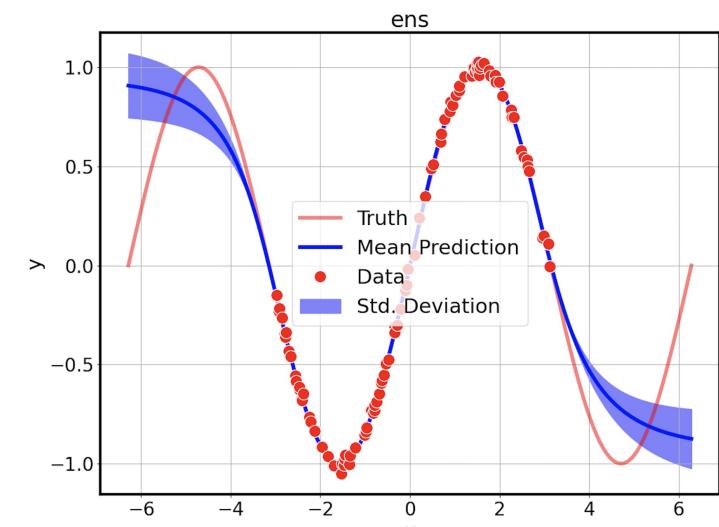
Option 2: Variational Inference



`uqnet = Ens_NN(nnet, nens=nmc)`

```
class Ens_NN(QuiNNBase):
    def __init__(self, nnmodule, nens=1, verbose=False):
        super(Ens_NN, self).__init__(nnmodule)
        self.verbose = verbose
        self.nens = nens
```

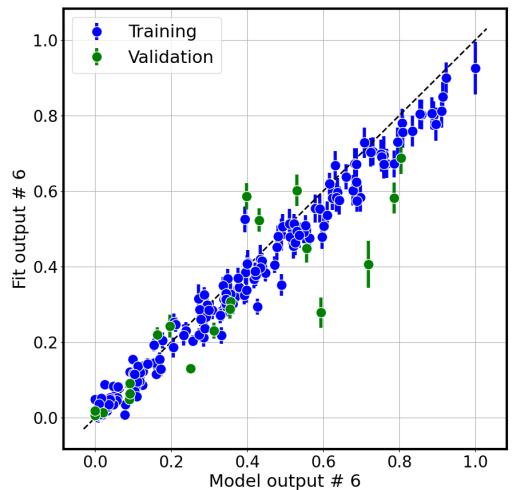
Option 3: Ensembling



- Multiple applications are informing the development of foundational research
- None of these applications have been previously exposed to NN prediction uncertainties, particularly in the context of ResNets and weight parameterization

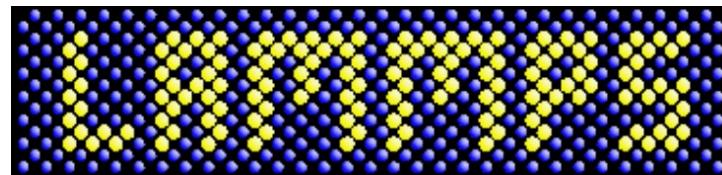
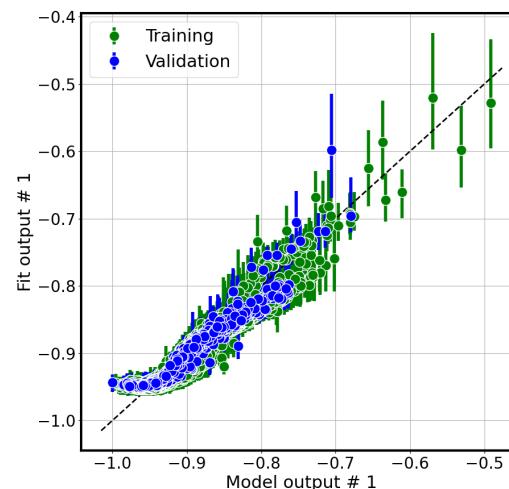
E3SM Vegetation Dynamics

- 15 input parameters
- 10 static output QoIs
- 2K training simulations



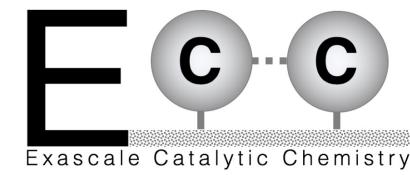
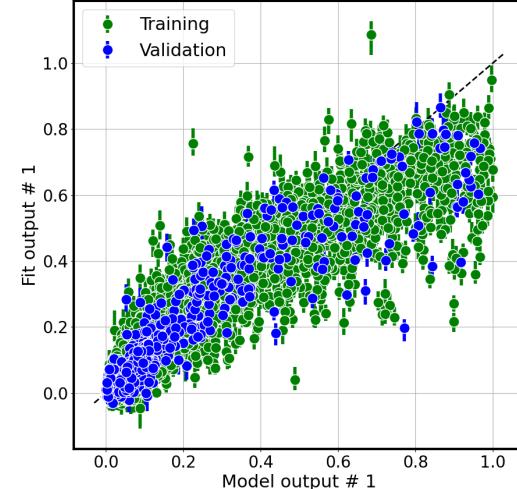
FitSNAP Entropy Dataset

- 30 input bases
- 1 output (Energy/Force/Stress)
- 20K training DFT simulations



CO-on-Pt(111) Adsorbate

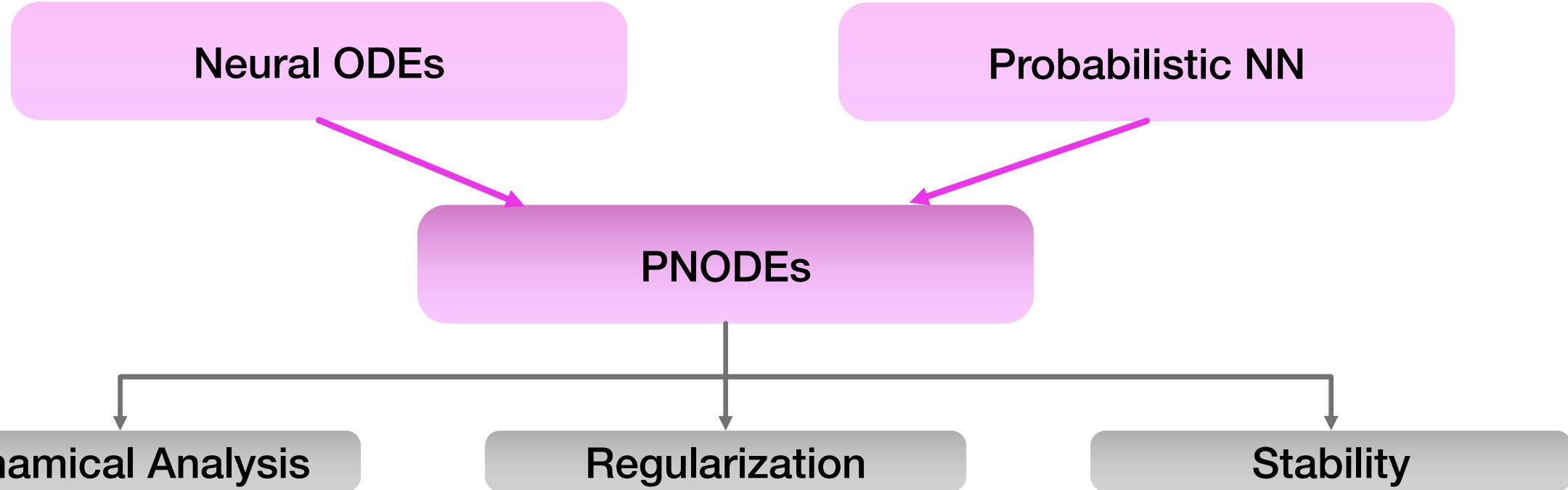
- 6 input d.o.f.
- 1 output (Energy)
- 10K training DFT simulations



- Focus on ResNets and draw inspiration from ODEs
- ResNets regularize the learning problem, smoother loss surface
- **Weight parameterization** allows further regularization

- **Probabilistic approaches** more feasible with weight-parameterized ResNets
- Need to find sweet spot between empirical to fully Bayesian, and
- ... conventional mean-field variation inference isn't that.

Extra Materials



Dynamical Analysis

- Singular perturbation
- Stiffness
- Model reduction
- Non-local interactions

Regularization

- Random field parameterization of weights
- Enforce structure: smoothness, sparsity, low-rank

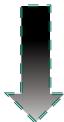
Stability

- Robustness with noise
- Eigenvalue structure under uncertainty

Generalizable model; improved architecture; confidence assessment; robustness to noise

Foundational capabilities impacting multiple applications

Predictive capability of Neural Networks (NNs) hinges on **generalization** (ability to predict well outside training data).



Regularization of NNs as a way to achieve generalization.

- ✓ Stiffness Penalization
- ✓ Weight Parameterization
- ✓ Probabilistic Weights

- ✓ Climate Land Modeling
- ✓ Catalytic Chemistry
- ✓ Materials Science

Methods

Applications

Forward equivalence:

Backward not so much:

Gradient computations differ!

ResNet	NODE
$x_{n+1} = x_n + \alpha_n \sigma(W_n x_n + b_n)$	$\frac{dx}{dt} = \sigma(W(t)x + b(t))$

Neural ODE discretized using explicit Euler and ResNet produce identical outputs choosing time step: $\Delta t = \frac{T}{L}$, $\alpha_n := \Delta t$, $W_n := W(n\Delta t)$ and $b_n := b(n\Delta t)$ for all n .

Consider $W(t) \equiv W$ and $b \equiv 0$:

Discretized Neural ODE with adjoint method:

$$\nabla \text{loss} = 2((1 + \delta t W)^L x - y)(1 + \delta t W)^{\boxed{L}} x$$

ResNet with backpropagation:

$$\nabla \text{loss} = 2((1 + \delta t W)^L x - y)(1 + \delta t W)^{\boxed{L-1}} x$$

- Gradients converge as $L \rightarrow \infty$ but differences can be large for small L ,
- Optimize then discretize (adjoint method) \neq discretize then optimize (backpropagation).

Prior Work on Probabilistic NN

- Probabilistic NN have been around since 90s [MacKay, 1992; Neal, 1997]
 - Full probabilistic treatment was infeasible back then (and still is, generally)
 - Recent work showed avenues via variational methods with clever tricks:
 Bayes by Backprop [Blundell, 2015]; Probabilistic backprop [Hernandez-Lobato 2015]
- Ghahramani, “Probabilistic Machine Learning and Artificial Intelligence”. *Nature*, 2015
 - “*Nearly all approaches to probabilistic programming are Bayesian since it is hard to create other coherent frameworks for automated reasoning about uncertainty*”
- Industry *is* catching up: Bayesflow at Google, infer.NET at Microsoft, Uber has shown interest
- Still not industry-standard: expensive, not well understood.