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Motivation and model transmission problem



3 Motivation and Overview

Couple conventional FEMs with projection-based ROMs to increase
computational efficiency
Monolithic framework: use Schur complement to approximate interface flux,
explicit time integration decouples the subdomain problems at each time step
Compare performance of FEM-FEM, ROM-FEM and ROM-ROM couplings
with a model transmission problem
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4 Model transmission problem: advection-diffusion

ϕ̇i −∇ · Fi(ϕi) = fi on Ωi × [0, T ]

ϕi = gi on Γi × [0, T ], i = 1, 2

ϕi(x,0) = ϕi,0(x) in Ωi, i = 1, 2

ϕi: unknown scalar field
Fi(ϕi) = κi∇ϕi − uϕi : total flux function
κi: non-negative diffusion coefficient
u: given velocity field

Enforce continuity of states and of total flux along the interface:

ϕ1(x, t)− ϕ2(x, t) = 0 and F1(x, t) · nγ = F2(x, t) · nγ on γ × [0, T ]
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5 Weak formulation

Use a Lagrange multiplier to enforce state continuity interface condition:
λ = F1 · nγ = F2 · nγ.

Seek {ϕ1, ϕ2, λ} ∈ V := H1
Γ(Ω1)×H1

Γ(Ω2)×H−1/2
Γ (γ), such that

(ϕ̇1, ν)Ω1
+ (κ1∇ϕ1,∇ν)Ω1

− (uϕ1,∇ν)Ω1
+ (λ, ν)γ = (f1, ν)Ω1

, ∀ν ∈ H1
Γ(Ω1)

(ϕ̇2, η)Ω2 + (κ2∇ϕ2,∇η)Ω2 − (uϕ2,∇η)Ω2 − (λ, η)γ = (f2, η)Ω2 , ∀η ∈ H1
Γ(Ω2)

(ϕ1, µ)γ − (ϕ2, µ)γ = 0, ∀µ ∈ H−1/2(γ)
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6 Decoupled subdomain equations

Knowing λ allows decoupling of the subdomain equations.

Each subdomain problem is a well-posed mixed boundary value problem with a
Neumann condition on γ provided by λ:

ϕ̇i −∇ · Fi(ϕi) = fi on Ωi × [0, T ]

ϕi = gi on Γi × [0, T ]

Fi(ϕi) · ni = (−1)iλ on γ × [0, T ]

i = 1, 2 .
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7 Semi-discrete formulation

Let V h ⊂ V be a conforming finite element space spanned by a basis {νi, ηj , µk};
i = 1, . . . , N1; j = 1, . . . , N2; k = 1, . . . , Nγ . Discretizing the weak formulation
yields a Differential Algebraic Equation (DAE) system:

M1Φ̇1 +GT1 λ = f1(Φ1)

M2Φ̇2 −GT2 λ = f2(Φ2)

G1Φ1 −G2Φ2 = 0

(FEM-FEM)

where for r = 1, 2

Mr: mass matrices
f r(Φr) = fr − (Dr +Ar)Φr

Dr, Ar: matrices for diffusive and advective flux terms
Gr: matrices enforcing the (weak) continuity of the states

(G1)i,j = (νj , µi)γ ; (G2)i,j = (ηj , µi)γ
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Explicit partitioned scheme: IVR



9 IVR method: eliminate then discretize

Goal: Express λ as an implicit function of the states
Differentiate the state continuity equation to reduce to an Index-1 Hessenberg DAE:

ẏ = f(t, y, z)

0 = g(t, y, z)

with y = (Φ1,Φ2) the differential variable, z = λ the algebraic variable

f(t, y, z) =

M−1
1

(
f1(Φ1)−GT1 λ

)
M−1

2

(
(f2(Φ2) +GT2 λ

)
and

g(t, y, z) = Sλ−G1M
−1
1 f1(Φ1) +G2M

−1
2 (f2(Φ2) .
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10 Decoupling and time discretization

S = G1M
−1
1 GT1 +G2M

−1
2 GT2 : Schur complement from the FEM-FEM system.

Nonsingular under certain conditions for Gi.

The equation g(t, y, z) = 0 defines z as an implicit function of the differential
variable.
This decouples the system into 2 ODEs:[

M1 0
0 M2

] [
Φ̇1

Φ̇2

]
=

[
f1(Φ1)−GT1 λ
f2(Φ2) +GT2 λ

]

Apply an explicit time integration scheme to solve them independently.
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ROM Construction



12 Creating a ROM

Goal: Extend the IVR scheme to a ROM-FEM coupling. Want a reduced order
basis matrix Ũ on Ω1 such that Φ1 = ŨϕR + β.

1. Obtain m snapshots in time of the original FE solution on Ω1

2. Create a matrix X whose columns are the m snapshots
3. Dirichlet BCs: define βk as a vector whose free coefficients (nodes on the

interior or γ) are zero and whose Dirichlet coefficients are the nodal values of
the boundary data at time tk. Form adjusted matrix, X0, by subtracting βk
from the kth column of X. (Effectively zeros out Dirichlet rows of X).

4. Compute the SVD of the adjusted matrix, X0 = U0Σ0V
T
0 .

5. Create Ũ0 by removing columns of U0 corresponding to singular values less
than a tolerance δ.
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Extension of IVR to a ROM-FEM coupling



14 ROM-FEM system to DAE

Assume time-independent Dirichlet conditions for the following.
Define M̃1 := ŨT0 M1Ũ0and G̃T1 := ŨT0 G

T
1

Substitute Ũ0ϕR + β for Φ1 and multiply the first equation by ŨT0

M̃1ϕ̇R + G̃1
T
λ = ŨT0 f1(Ũ0ϕR + β)

M2Φ̇2 −GT2 λ = f2(Φ2)

G̃1ϕ̇R −G2Φ̇2 = 0

The ROM-FEM monolithic system is an index-1 DAE:

f(t, y, z) =

M̃1
−1
(
ŨT0 f1(Ũ0ϕR + β)− G̃1

T
λ
)

M−1
2

(
(f2(Φ2) +GT2 λ

) 
and

g(t, y, z) = S̃λ− G̃1M̃1
−1
(
ŨT0 f1(Ũ0ϕR + β)

)
+G2M

−1
2 f2(Φ2)
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15 ROM-FEM and ROM-ROM extension

Requires the Jacobian ∂zg = S̃ to be nonsingular for all t. Analytically proven
for FEM-FEM coupling under certain conditions for the Lagrange multiplier
space, empirically observed for ROM-FEM.

ROM-ROM coupling: transform both subdomain equations using
Φ1 = Ũ1,0φR + β1 for the first subdomain, and Φ2 = Ũ2,0ψR + β2 for the
second subdomain.
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Numerical examples



17 Numerical results

RK4 used for time discretization; snapshots from monolithic FEM on Ω

Rotating advection field (0.5− y, x− 0.5) for one full rotation
4225 DOFs in Ω, 2145 DOFs in each subdomain
Two configurations: “pure advection”: κi = 0, and “high Peclét”: κi = 10−5
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18 Accuracy: relative error vs. basis size

Relative error defined as

ε :=
||X2π − F2π||2
||F2π||2

for X ∈ {R,FF,RF,RR}.

Reference solution is the global FEM solution at t = 2π
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19 Efficiency: relative error vs. online CPU time

Coupling does not introduce significant overhead for high fidelity models
Introducing a ROM on one or both sides of the coupling can reduce CPU time
by 1-1.5 orders of magnitude while maintaining accuracy
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20 Relative errors vs. basis size for pure advection

For the exact solution to the pure advection problem, ε0 is identically 0.

ε0 :=
||X0 −X2π||2
||X2π||2

for X ∈ {F,R, FF,RF,RR}
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21 High Peclét interface solutions at t = 2π

ROM-FEM using NR = 80

ROM-ROM using NR,left = 112, NR,right = 110
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22 Alternate formulation for ROM-ROM
Form separate SVDs for the interface and interior DOFs, resulting in the
ansatzes for i = 1, 2:

Φi,0 = Ũi,0φi,0 + βi,0 and Φi,γ = Ũi,γφi,γ + βi,γ (subscripts “0” and “γ”
represent interior and interface DOFs, respectively)

50 modes in each subdomain 40 interior/10 interface modes in each
subdomainWCCM 2022



23 Conclusions

Extended an explicit partitioned scheme to include ROM-FEM and
ROM-ROM couplings

Lagrange multiplier (interface flux) expressed as implicit function of state
solutions through Schur complement
Explicit time integration decouples the subdomains

Both coupling results strongly agree with those produced by FEM-FEM
coupling

Implementing ROM in one or both subdomains reduces time/cost
Continuing work: Extend to other discretizations or reduced models, reduced
space for Lagrange multiplier, analysis for ROM-FEM and ROM-ROM cases
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