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3 | Motivation and Overview

I

1

m Couple conventional FEMs with projection-based ROMs to increase
computational efficiency

m Monolithic framework: use Schur complement to approximate interface flux,
explicit time integration decouples the subdomain problems at each time step

B Compare performance of FEM-FEM, ROM-FEM and ROM-ROM couplings
with a model transmission problem
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4 I Model transmission problem: advection-diffusion

$i = V- Fi(pi) = fi on Q; x [0, 7]
i = G; onT; x[0,7], i=1,2
pi(x,0) = pig(x)  in €y i=1,2

B ¢;: unknown scalar field

B Fi(p;) = ki Ve, —uyp; : total flux function
B x;: non-negative diffusion coefficient

B u: given velocity field

Enforce continuity of states and of total flux along the interface:

p1(x,t) —@a(x,t) =0 and Fi(x,t) -n, = Fp(x,t)-n, on~y x[0,T]
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5 | Weak formulation

Use a Lagrange multiplier to enforce state continuity interface condition:
)\ZFl-ILY:FQ-I’lv.

Seek {¢1, 02, \} € V := HE(Qq) x HE(Q2) x H;1/2(7), such that

((/él’ V)Ql + (Hlvwh VV)QI - (U(pl, VV)Ql + ()‘7 V)’Y = (f17 V)Ql7 NS H%(Ql)
(90.2777)92 + (KQVSDQV VW)QQ - (ll(pg, Vn)ﬂz - (A»ﬂ)w = (f%n)ﬂz’ Vn € HIl‘(QQ)

(o1, )y — (P2, 1)y =0, Ve HY2(y)
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s | Decoupled subdomain equations

Knowing A allows decoupling of the subdomain equations.

Each subdomain problem is a well-posed mixed boundary value problem with a
Neumann condition on v provided by A:

¢ =V -Fi(g;) =fi onQy;x[0,T]

pi=g; onl;xI[0,T] i=1,2.
Fi(g;) -ny = (=1)'A  on~yx[0,T]
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7 | Semi-discrete formulation

Let V" C V be a conforming finite element space spanned by a basis {v;, Ny M };
t=1,...,N;;5=1,...,No; k=1,..., N,. Discretizing the weak formulation
yields a Differential Algebraic Equation (DAE) system:
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7 | Semi-discrete formulation

Let V" C V be a conforming finite element space spanned by a basis {v;, Ny M };
t=1,...,N;;5=1,...,No; k=1,..., N,. Discretizing the weak formulation
yields a Differential Algebraic Equation (DAE) system:

M1<i)1 + G?)\ = ?1(‘13’1)

My®y — GEX = £2(®2) (FEM-FEM)

Gl(I’l — GQ@Q =0

where for r = 1,2
m M,: mass matrices
mf.(®,)=1Ff — (D +A,)®,

m D,, A.: matrices for diffusive and advective flux terms

B G,: matrices enforcing the (weak) continuity of the states

(G1)ij = V), i)y (G2)ig = (05, i)~
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o I IVR method: eliminate then discretize

Goal: Express A as an implicit function of the states
Differentiate the state continuity equation to reduce to an Index-1 Hessenberg DAE:

y=f(t,y,2)
0=g9(ty,2)

with y = (®1, ®2) the differential variable, z = A the algebraic variable

M (B1(®1) - GTA)

D=\ 0 (@2 + 1)

and

g(t,y, Z) =S\ — GlMl_lfl(@l) + GQM;I(?2(¢2) . |
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Decoupling and time discretization

S = GlelG{ + GgM{ng: Schur complement from the FEM-FEM system.

Nonsingular under certain conditions for G;.

The equation g(t,y,z) = 0 defines z as an implicit function of the differential

variable.
This decouples the system into 2 ODEs:

vl [l

Apply an explicit time integration scheme to solve them independently.
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Creating a ROM

Goal: Extend the IVR scheme to a ROM-FEM coupling. Want a reduced order
basis matrix U on §2; such that ®; = Upgr + B.

1.
2.
3.

Obtain m snapshots in time of the original FE solution on €

Create a matrix X whose columns are the m snapshots

Dirichlet BCs: define 8y as a vector whose free coefficients (nodes on the
interior or ) are zero and whose Dirichlet coefficients are the nodal values of
the boundary data at time ¢;. Form adjusted matrix, Xy, by subtracting B
from the k" column of X. (Effectively zeros out Dirichlet rows of X).
Compute the SVD of the adjusted matrix, X¢ = UOEOVOT.

Create Uy by removing columns of Uy corresponding to singular values less
than a tolerance 4.







14 I ROM-FEM system to DAE

Assume time-independent Dirichlet conditions for the following.
B Define M; := Uf MyUpand GT .= UFGT )
m Substitute Uppr + B for ®; and multiply the first equation by Ug
~ . ~ T ~ A —_— o~
Mypr+Gi A= Ug fi(Uspr + B)
My®; — GITA = £5(®5)
G1pr — Go®y =0
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14 I ROM-FEM system to DAE

Assume time-independent Dirichlet conditions for the following.
B Define M; := U MyUpand GT .= UFGT )
m Substitute Uppr + B for ®; and multiply the first equation by Ug
~ . ~ T ~ — o~
Mipr+ G A= Ul f1(Uopr + B)
My®; — GITA = £5(®5)
G1pr — Go®y =0
The ROM-FEM monolithic system is an index-1 DAE:
SR | P - T
Ftp.2) M (U()Tfl(UO‘PR +8) - Gi A)
) y7 Z = —
M ((f2(<1>2) + G%’A)
and

g(t,y,2) = SA— GiM, (0{{?1([70901% + ﬂ)) + Go My o (®2)
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15 I ROM-FEM and ROM-ROM extension

m Requires the Jacobian 9,9 = S to be nonsingular for all t. Analytically proven
for FEM-FEM coupling under certain conditions for the Lagrange multiplier
space, empirically observed for ROM-FEM.

® ROM-ROM coupling: transform both subdomain equations using
P = Uy,0¢r + B for the first subdomain, and ®2 = Uz g9r + B2 for the
second subdomain.
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17 I Numerical results

Initial conditions att =0

Mesh
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B RK4 used for time discretization; snapshots from monolithic FEM on 2
m Rotating advection field (0.5 — y,z — 0.5) for one full rotation
m 4225 DOFs in 2, 2145 DOFs in each subdomain

m Two configurations: “pure advection™ x; = 0, and “high Peclét™ x; = 107>
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Accuracy: relative error vs. basis size

Pure Advection Problem
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High Peclet Problem
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for X € {R,FF,RF, RR}.

B Reference solution is the global FEM solution at ¢ = 27




19 | Efficiency: relative error vs. online CPU time
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B Coupling does not introduce significant overhead for high fidelity models

B Introducing a ROM on one or both sides of the coupling can reduce CPU time
by 1-1.5 orders of magnitude while maintaining accuracy
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20 I Relative errors vs. basis size for pure advection

Pure Advection Problem
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For the exact solution to the pure advection problem, ¢j is identically 0.
|1 X0 — Xor||2

co = R0 22l2 . ¥ e (F,R, FF,RF,RR)
|| Xox||2
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High Peclét interface solutions at ¢t = 2«

ROM-FEM for high Peclet regime at time t = 6.28
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22 | Alternate formulation for ROM-ROM

m Form separate SVDs for the interface and interior DOFs, resulting in the
ansatzes for i = 1,2:
] q)i,O = Oi,O(bi,O + /31',0 and éi,’y = Di,'y(ﬁi,’y + Bi,’y (subscripts “0” and “’y”
represent interior and interface DOFs, respectively)

ROM-ROM coupling for high Peclet regime at time t = 6.28
ROM-ROM coupling for high Peclet regime at time t = 6.28
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23 | Conclusions

B Extended an explicit partitioned scheme to include ROM-FEM and
ROM-ROM couplings

m Lagrange multiplier (interface flux) expressed as implicit function of state
solutions through Schur complement
m Explicit time integration decouples the subdomains

B Both coupling results strongly agree with those produced by FEM-FEM
coupling

B Implementing ROM in one or both subdomains reduces time/cost

B Continuing work: Extend to other discretizations or reduced models, reduced
space for Lagrange multiplier, analysis for ROM-FEM and ROM-ROM cases
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