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2 | Antennas with multiple resonances
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3 ‘ A simple resonator
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4 ‘ Multiple resonators can display interesting behavior
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5 | Another way to get a Smith chart loop
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Yet another way to get a Smith chart loop
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“N” coupled resonators
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s I Coupled Mode Theory
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9 I Stacked patches

In-phase mode

\%Q Anti-phase mode

Frequency [GHz]

R. B. Waterhouse, "Design of probe-fed stacked patches", IEEE TAP, vol.47, no.12, Dec. 1999.



0 | U-slot patch In-phase mode
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T. Huynh and K. F. Lee, "Single-layer single-patch wideband microstrip antenna", Electron. Lett., vol. 31, Aug. 1995.



In-phase mode

11 1 U-slot patch
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12 I U-slot patch
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13 I Annular coupled patch
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Coplanar patches In-phf'ise mode
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G. Kumar and K.P. Ray, "One Parasitic Patch", Broadband Microstrip Antennas, vol. 3, no. 3.3.1.1, pp. 91, 2003.




15 | Far-field E-plane cuts
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16 | Comparing modal weighting coefficients
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18 I Summary

* CMT explains many
different multi-mode

Palddassight can be used to create
systematic design methodologies
and generate new broadband
radiator concepts
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