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Can SiO, glass preserve volatiles during impacts? 1a. At increased v, ,,qc¢, Material stiffness increases Spectroscopy reveals post-impact OH content

Water 1s abundant 1n planetary building blocks Lagrangian Sound Speed quantifies material response during shock Bruker Tensor37 coupled to Bruker Hyperion microscope 15x objective and 10x

Deuterium to Hydrogen (D/H) ratio (Fig 1.) numerically represents the combination of _ Ax eyepieces
sources of Earth’s water ‘L (up) T At Transmission spectra recorded from 6000 to 4000 cm-! at ambient conditions (Fig 8)

One potential contribution to D/H ratio 1s water deposited via impactors (With Vippac¢ Double polished S10, samples recovered from shock experiments

on Earth ranging from 11 [km/s] to 53 [km/s]) ( ) TXN 2 oty \> )’ Aperture size set to smallest sample and used for all experiments (1mage)
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* Qur goal is to experimentally constrain the contribution of impactors to Earth’s D/H ratio 6.5 ‘\r Stiffer 200 15 compression
by shocking hydrated SiO, glasses to see what happens to volatile species upon impact L TNATORG ~ ~400 m/s ' (our results) ‘ Beer-Lambert Law relates water concentration to OH peak height (Stopler, 1982)
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la. Does impact velocity change material response? 50 50 100 150 500 Q. . ' l ' Peak height of the OH band varies between samples of the same initial composition
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1b. Does OH content change material response? ug, [m/s] Samples impacted at 300 m/s show little to no OH peak
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Fig. 4 (left) Lagrangian sound speeds of dry and hydrated glassed over increasing impact velocities. Fig 5. (right) Pressure density curve with
both static (black line) and dynamic (colors) experimental results

2. What 1s the degree of devolatilization that occurred during shock? 200 m/s
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Shock quantifies material response properties 1b. At increased v,,,qc¢, OH affects material response
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Gas gun housed 1n the Dynamic Integrated Compression Experimental Facility
Impact speeds 100, 200, 300 & 400 m/s

Velocity iterferometer system for any reflector (VISAR) collects velocity data from 4 Wavenumber [cm ]
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- P = c. du oP = oc. du — 1 — C—l du Fig 9 (left) Post-impact hydrated sample densities with A,,¢0 peak location labeled. Fig. 10 (right) OH band at ~3650 [cm™!]
channels (FlgS 2 & 3) Po 0 L Po 0 L P Po 0 L background-subtracted, normalized FTIR absorbance spectra of initially water-bearing glasses
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Capable of sample recovery post-impact
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* Dry and hydrated samples behave the same at low velocities (Fig 6) . .
la. Does impact velocity change mat response?
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E 550 Dry and hydrated samples behave differently at high velocities (Fig 7) * Independent of composition, S10, glass has a stiffer response at high v, (Fig 4)
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Future plans to increase sample complexity to chemicals more representative of solar
Compositional variation pressure-density curve Fig 6 (left) low impact velocities. Fig 7 (right) high impact velocities. system comp ositions (basalt)
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