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Aerospace / precision mechanisms share similar concerns

e operate in vacuum (+atomic oxygen in low earth orbit), or

inert gas near P, trace O,, H,O, outgassing species

store months — years before use; generally non-serviceable
operating temperatures from 50 — 300K, depending on location

MoS, Films for Extreme Environment Lubrication

huge investments of time and money
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Run-In Processes:

1) Transfer Film Formation

transfer shear ,
film SN

2) Shear-induced re-orientation and coalescence
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MoS, Structure-System Relationships rh

Material Microstructure Tribological Properties Depend on: Environment
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Tribological Properties Depend on: Contact Conditions
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+ 1 Long- and Short-Term Aging Effects
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d Surface oxidation can dramatically increase the [ Significant friction increase after dormant period
initial friction coefficient O Increase in initial friction increases with dwell-time

[ in this example, atomic oxygen reacted with top O Dwell-time effects are also observed in vacuum

100 nm of film * monolayer adsorption and/or diffusion from

bulk of film



Mitigation of Dynamic Friction Effects

ore rubbin After rubbin
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phases (Sb203, NI, AUPd, ) J.S. Zabinski et al, Wear 165 (1993) p. 103

> jon bombardment during growth

adaptive transfer film (“tribo-
skin”) on contact surfaces A.A. Voevodin et al, J. Vac. Sci.
Tech. A20 (2002) p. 1434

Proposed Mechanisms
> densification chameleon” coating
° increased hardness : : ' ‘
> preferential orientation
o sacrificial oxidation of dopants
> passivation of MoS, edge sites
o crack arresting

Friction coefficient

" 40% RH air
How do dopants/composite phases influence aging? ‘
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Sputtered MoS, Films Investigated

MoS, (NC=nanocrystalline)

p—————— 200 nm

MoS, + Ti (short range order)
MosS, + Ti + NC cap

MoS, + Sb,0, + Au (amorphous)
Slide 6 MoS, + Sb,0; + Au + NC cap

crystalline Au
nanoparticles




Experimental Setup

Friction Test Run In

coated disk

run in patch

4x8 mm
O 440C ball, 3.2 mm dia. L 13-8PH or 440C stainless O 200°C, 12 hours, P, at 2.4 L/min.
0 1 mm/s sliding speed steel disks o Dry Air (DP < -60°C)
O 530 MPa L 50 passes, overlapping areas o Humid Air (50%RH at 20 °C)

* The run-in area provides a region large enough for XPS of surfaces restructured by contact
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Determining Mo oxidation state using XPS
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Tracking oxidation of MoS, in aged films
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Tracking oxidation of MoS, in aged films
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Tracking oxidation of MoS, in aged films
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Tracking oxidation of MoS, in aged films
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* Aging in dry air generally produced more oxidation than aging in humid air



Tracking oxidation of MoS, in aged films
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* Surfaces worn prior to aging generally exhibited less oxidation than unworn surfaces

@)

this effect is modest, and most pronounced in the nanocrystalline surfaces



1« I Aging studies on run-in surfaces - baselines
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s I Aging studies on run-in surfaces — aged in air
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s I Aging studies on run-in surfaces — aged in N,
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o | MD Suggests Structural Mechanism at Play
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MD Conclusions

« Sliding on pristine MoS,, orders lamella and increases lamella size — low friction

* 0O, and H,0O passivate edge sites preventing coalescence of lamella

MD suggests environmental species inhibit long range order of lamellae,
Curry, J. F. et al. Tribol. Lett. (2021) preventing restructuring to low friction interfaces



Conclusions

* Accelerated aging of composite MoS, film structures:
° Ti-doped film has lower Mo-S than other films, pure or doped

o Sb203+Au-doped film resists oxidation better than Ti-doped film in both dry and
humid atmospheres

o Aging in dry air generally produced more oxidation than aging in humid air

o Surfaces worn prior to aging generally exhibited less oxidation than as-deposited
surfaces

* Run-in of surfaces restructured by sliding contact:

o Higher degrees of crystallinity and lower defect densities at the surface are favorable
for reducing friction and oxidation

o Surface re-ordering can even occur in non-inert environments to afford similar
protections

* The role of water and oxygen on dynamic recrystallization during sliding
contact:

> MD simulations suggest water interaction/agglomeration with edge sites prevents
formation of long range order MoS2

o Structural degradation (smaller flake size, higher defect density) due to
environmental interactions leads to increased friction
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