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Introduction
Sputter deposited MoS2 coatings without dopants  (i.e., pure) 
have been limited in use due to highly variable tribological 
properties between deposition runs (i.e., batch to batch 
variation) driven by uncontrolled changes in coating 
morphology

Results - Tribology
Three batches of sputter deposited pure MoS2 coatings with 
identical parameters, but on different days, were deposited and 
tested in humid (30% and 60% RH) and inert environments (dry 
air and N2)

Results - X-ray di�raction (XRD)
X-ray di�raction (XRD) shows di�erences in orientation: LD-1 is 
vertically-oriented (i.e., columnar),  LD-2 is weakly 
basally-oriented, and HD-1 is randomly oriented 

Results - Density and Hardness
• Rutherford backscattering spectroscopy (RBS) can be used 
to quantify coating density

• Combined with hardness from nanoindentation, a 
relationship between hardness and density can be 
developed 

Linking Density to Aging Resistance
• HS-LEIS depth pro�les show that low-density, columnar 
coatings have more severe surface oxidation and allow 
oxygen to penetrate the coating through pathways formed by 
voids

Results - Accelerated Aging and 
Depth pro�ling using HS-LEIS
• Accelerated aging was performed on a low-density coating 
(LD-1) and a high-density (HD-1) coating using 
high-temperature O2

• High-sensitivity low energy ion spectroscopy (HS-LEIS) 
depth pro�les were perfomed to probe surface oxidation 
and penetration of oxygen into the coatings

Deposition of highly-dense pure MoS2 is challenging (Figure 
1), requiring the use of dopants (i.e., Ti, Au, Sb2O3) to densify 
coatings (Figure 2). Densi�cation from dopants is a leading 
hypothesis for improved wear rates (~1 x 10-7 mm3/Nm for 
MoS2/Sb2O3/Au) in humid and inert environments

Hypothesis: Density is a key characteristic in�uencing wear 
and aging for sputter deposited MoS2 coatings. 

1) Can pure MoS2 coatings attain similar performance (i.e., low 
wear in humid and inert environments) to doped coatings if 
highly-dense?

2) Are dense coatings more resistant to oxidation from 
prolonged storage in water and oxygen (i.e., aging)?

Questions to think about: 
How can we determine coating batch “quality” without costly 
characterization?
1) What does “quality” mean for MoS2 coatings?
• Resistant to oxidation from aging
• Low wear in inert environments
 • Will not fail when briefly tested in humid environments
• Low initial coefficient of friction
• Minimize cycles to achieve steady-state friction

2) Can we assign values to the above coating qualities with 
easily determined quantifyable metrics?

Key Findings: 
• Hardness is dependent on density - pure MoS2 coatings 
have a ~2x higher hardness than porous coatings
• Hardness is dependent on coating orientation with 
columnar �lms having a lower measured hardness than 
basally-oriented �lms  
• Hardness can be used as an indicator to distinguish coating 
batches that are not high quality (i.e., low-density or 
columnar)

We observe from the tribological testing (Figures 3 and 4) that 
porous coating batches (LD-1 and LD-2) due to void formation 
(Figure 1) have 10-100x higher wear rates than the high-density 
coating (HD-1)

We can reduce the e�ects of aging on low-density coatings by 
sliding before oxidation. Sliding results in a basally-oriented 
surface layer and compacts voids.
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Figure 2: Transmission electron micrographs (TEM) of 3 pure MoS2
coatings deposited with identical deposition parameters in the 
same chamber on different days showing a varying degree of
void formation
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Figure 1: Transmission electron micrographs (TEM) of 3 pure MoS2
coatings deposited with identical deposition parameters in the 
same chamber on different days showing a varying degree of
void formation. (A) The low-density coating batch #1 (LD-1) and (B)
the low-density #2 coating batch (LD-2). (C) The high-density coating 
batch (HD-1)

Figure 3: Wear rates of the low-density #1 (LD-1), low-density #2 
(LD-2), and high-density (HD-1) coatings in dry N2, dry air, 30% RH air 
and 60% RH Air.

Figure 4: Coe�cients of friction for the low-density #1 (LD-1), low-den-
sity #2 (LD-2), and high-density (HD-1) coating batches in (A) dry N2, (B) 
dry air, (C) 30% RH air, and (D) 60% RH air

Figure 5: XRD of the low-density #1 (LD-1), low-density #2 (LD-2) and 
high-density (HD-1) coatings showing di�erences in orientation 

Figure 6: (A) Coating density measured via RBS for the low-density #1 
(LD-1), low-density #2 (LD-2), and high-density coating batches. (B) 
Hardness of LD-1, LD-2 and HD-2 measured via nanoindentation show-
ing higher hardness values for denser coating batches

Figure 7: HS-LEIS depth pro�les of the oxygen to molybdenum ratio 
(O:Mo) for the low-density #1 (LD-1) and high-density (HD-1) coatings 
after two high-temperature oxygen exposures of varying severity

Figure 8: Mechanistic framework linking coating density and oxida-
tion. Low-density columnar coatings are susceptible to aging as voids 
provide pathways for oxidative species into the coating and expose re-
active edge sites that are easily oxidized.

Figure 9: HS-LEIS depth pro�les of the oxygen to molybdenum ratio 
(O:Mo) for the low-density #1 (LD-1) and high-density (HD-1) as-depos-
ited coatings and slid regions after high-temperature oxygen expo-
sures for 12 hours

Figure 10: Mechanistic framework showing the bene�ts of sliding 
before oxidation for low-density coatings. Sliding orients the surface 
and elimates pathways into the coating improving aging resistance.
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