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Abstract—Traditional deep learning (DL) models are powerful
classifiers, but many approaches do not provide uncertainties
for their estimates. Uncertainty quantification (UQ) methods for
DL models have received increased attention in the literature
due to their usefulness in decision making, particularly for high-
consequence decisions. However, there has been little research
done on how to evaluate the quality of such methods. We use
statistical methods of frequentist interval coverage and interval
width to evaluate the quality of credible intervals, and expected
calibration error to evaluate classification predicted confidence.
These metrics are evaluated on Bayesian neural networks (BNN)
fit using Markov Chain Monte Carlo (MCMC) and variational
inference (VI), bootstrapped neural networks (NN), Deep En-
sembles (DE), and Monte Carlo (MC) dropout. We apply these
different UQ for DL methods to a hyperspectral image target
detection problem and show the inconsistency of the different
methods’ results and the necessity of a UQ quality metric. To
reconcile these differences and choose a UQ method that appro-
priately quantifies the uncertainty, we create a simulated data
set with fully parameterized probability distribution for a two-
class classification problem. The gold standard MCMC performs
the best overall, and the bootstrapped NN is a close second,
requiring the same computational expense as DE. Through this
comparison, we clearly demonstrate that, for a given data set,
different models can produce uncertainty estimates of markedly
different quality. This in turn points to a great need for principled
assessment methods of UQ quality in DL applications.

Index Terms—Bayesian neural network, Deep Ensembles, un-
certainty quantification, deep learning

I. INTRODUCTION

Traditional deep learning (DL) models are powerful pre-
dictors in both regression and classification problems (LeCun
et al. [2015]), but many do not provide uncertainties for their
predictions or estimates. The usefulness of uncertainty quan-
tification (UQ) in DL models is being recognized, especially
for applications that are high-consequence, including nuclear
stockpile stewardship and safety (Stracuzzi et al. [2018], Tru-
cano [2004]), nuclear energy (Stevens et al. [2016]), national
security problems (Gray et al. [2022], Ries et al. [2022]), and

medical diagnoses (Begoli et al. [2019], Kompa et al. [2021b]).
For example, Kompa et al. [2021b] explains the benefit of
using UQ in medical decision making, including models that
can report “I don’t know” to ensure human experts will further
evaluate results.

A. High Consequence Application

Hyperspectral images (HSI) contain information across hun-
dreds of spectral bands over a surface. These spectral bands
provide crucial information about what is in the scene, giving
significantly more information than the human eye can detect.
A common application of HSI is target detection, where
an observer is trying to determine if an object of interest
is in the image (Anderson et al. [2019], Nasrabadi [2013],
Poojary et al. [2015]). Of particular interest for national
security problems is finding rare or hidden targets. Past work
(Anderson et al. [2019], Gray et al. [2022]) has shown the
ability to detect targets at the sub-pixel level. However, the
high consequence nature of target detection applications have
an extremely high cost for false positives where the need for
trustworthy algorithms is paramount. Uncertainty quantifica-
tion of model predictions is becoming a necessity in high
consequence problems (Begoli et al. [2019], Trucano [2004])
to help alleviate this problem. Traditional DL methods only
provide a best estimate, and do not provide an estimate of the
model’s confidence in its predictions. Ries et al. [2022] applied
Bayesian neural networks (BNN) to an HSI target detection
problem and proposed High Confidence sets (HCS) as a way
to operationalize UQ output. There are many ways (other than
BNNs) to quantify model uncertainty, and the decision maker
must determine which UQ approach is most representative of
the true uncertainty.

Comparing different UQ methods on this application, we
clearly demonstrate that, for a given data set, different models
can produce uncertainty estimates of markedly different qual-
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ity. This in turn points to a great need for principled methods
to assess UQ quality in DL applications.

B. UQ Methods for DL Models

Bayesian neural networks were first popularized by David
MacKay (MacKay [1992, 1995]) and his student Radford
Neal (Neal [1996]). Neal’s dissertation introduced Hamilto-
nian Monte Carlo (HMC) as a way to sample the posterior
distribution of a BNN, providing a practical way of training
using Markov Chain Monte Carlo (MCMC). To this day,
HMC is considered the gold standard for BNN training due to
its theoretical backing and lack of approximations. Interested
readers should consult Gelman et al. [2013] for more details
and references about MCMC and HMC.

Variational inference is the most popular method of
Bayesian inference for neural networks (NN) (Graves [2011]).
Blei et al. [2017] gives an extensive review of VI methods.
Although VI is computationally much cheaper than MCMC,
a common criticism of standard implementations of VI is
the mean-field assumption (assuming posterior independence
of all parameters). Put simply, VI is an approximation to
the posterior distribution using optimization that improves
as the sample size increases, compared to MCMC which is
an approximation to the posterior distribution using sampling
that improves as the number of Monte Carlo (MC) samples
increases. Therefore, VI is constrained by data, and MCMC
is constrained by computation time.

The bootstrap is a simulation-based method that treats the
training data as the population and samples new data sets
with replacement from the original training set. Uncertainty
is measured by creating a large number of these new data
sets and then using the distribution of estimates or predictions
to quantify uncertainty (Gray et al. [2022]). Deep Ensembles
(DE) (Lakshminarayanan et al. [2017]) follow a similar idea to
the bootstrap except no resampling is done; the only difference
for each model in the ensemble is the set of starting values for
the model optimizer. Monte Carlo Dropout, proposed by Gal
and Ghahramani [2016], is an extension of dropout regular-
ization (Srivastava et al. [2014]) that understands dropout as a
sampling method that approximates a deep Gaussian process
(GP). Unlike traditional dropout regularization, which is only
applied during training, MC Dropout includes dropout during
inference. In this way, an ensemble of predictions can be
obtained from a single trained NN, allowing for uncertainty to
be estimated. Comprehensive reviews of UQ methods in DL
can be found in Kabir et al. [2018] and Moloud et al. [2021].

C. Review of assessing quality of UQ in DL

Unlike evaluating a DL model’s predictive performance
using metrics like mean squared error (MSE) or accuracy,
a commonly accepted UQ quality metric does not exist, but
some previous work has sought to address this problem. Kabir
et al. [2018] reviews the ideas of frequentist coverage and
interval width as tools for UQ evaluation and cites several
examples. Yao et al. [2019] evaluates the predictive uncertainty
for several BNN training methods and ensembles. The authors

found ensembles do not provide the UQ that users believe
it provides, and emphasize calibration metrics are not good
indicators of posterior approximation. The authors concluded a
new metric for assessing predictive uncertainty is needed. Ova-
dia et al. [2019] gives a large-scale benchmark of current UQ
for DL methods using metrics such as negative log likelihood,
Brier score, and expected calibration error (ECE). The authors
find many methods have trouble with out of distribution
(OOD) situations or with dataset shift. Ståhl et al. [2020]
evaluated several UQ for DL methods, including BNN and
DE, and found they captured the uncertainty differently and
correlations between the methods’ quantifications were low.
Kompa et al. [2021a] checked empirical frequentist coverage
and interval widths for several DL methods. The authors found
MC dropout and ensembling to have low interval coverages
and high variability in results on a regression example. In
comparison, BNN and GP provided the expected coverages
and low variability in the results. For classification, all methods
gave adequate coverages for independent and identically dis-
tributed (i.i.d.) data, but methods generally performed poorly
in terms of coverage when dataset shift was added. Naeini
et al. [2015] developed the Expected Calibration Error (ECE)
metric for classification models which assesses the agreement
of predicted confidences and model accuracy.

A desired metric to compare and assess uncertainty es-
timates should consider both aleatoric and epistemic un-
certainties. In brief, aleatoric uncertainty is the variability
due to randomness or noise in the process or measurement.
This type of uncertainty is always present and can only be
reduced by an improvement in the process of measurement,
not by increasing the sample size. Epistemic uncertainty is the
uncertainty resulting from imperfect knowledge of the model.
Examples of this include uncertainty during model selection
and parameter uncertainty during training. Increasing sample
sizes will help reduce epistemic uncertainty by either further
understanding the mechanism and creating better model archi-
tectures, estimating model parameters more precisely, or both.
A comprehensive introduction to the two types of uncertainties
in the context of machine learning is given by Hüllemeier and
Waegeman [2021].

This paper is organized as follows: Section 2 introduces the
motivating application and presents results which necessitate
further exploration. Section 3 introduces interval coverage,
interval width and ECE, the UQ metrics used in this paper
to assess UQ quality. Section 4 applies the metrics in Section
3 on DL models to a simulated classification data set. Finally,
Sections 5 and 6 discuss the results and provide conclusions,
respectively.

II. MOTIVATING APPLICATION

Our interest in the quality of the UQ given by a model
stems from a target detection problem in a high-consequence
decision space described in this section.
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A. Data

The synthetic dataset Megascene (Ientilucci and Brown
[2003]), is a high fidelity HSI simulation scene representing
a suburban area of Rochester, NY. The scene contains both
natural and man-made objects. Figure 1 shows a pseudo color
rendering of the entire scene, designated as MLS-1200; roads,
houses, trees, and even a track can be seen in the image. The
simulator uses an AVIRIS-like sensor measuring 211 spectral
bands ranging from 0.4 to 2.5 𝜇𝑚. The images were created
such that the scene is being observed at an elevation of 4
km, giving a pixel size of 1 m2. Therefore at each pixel, we
have the complete spectrum from 0.4 to 2.5 𝜇𝑚, and we know
exactly the contents of that pixel which make up the spectrum.
Details about the radiance to reluctance conversion, in addition
to other specifics, can be found in Anderson et al. [2019].

Fig. 1: Pseudo color render of Megascene MLS-1200 at R=670
nm, G=540 nm, B=480 nm. Image reproduced from Anderson
et al. [2019]

We are interested in detecting small targets hidden within
a scene. We manually inserted green discs (with a known
spectrum) randomly through the scene to represent targets to
detect. In total, the scene contains 125 discs ranging in size
from 0.1 to 4m radii. Given the pixel size of 1 𝑚2, some
targets fill multiple pixels while others fill just a fraction of
a pixel. To make the targets more realistic, some of the discs
were partially hidden beneath foliage. Figure 2 (Figure 6 in
Anderson et al. [2019]), shows a subset of Megascene with
several different sized green target discs. The image on the
right shows an example of a disc partially hidden by foliage.

Fig. 2: Left: Subset of Megascene showing inserted target
green discs. Right: Example of a green disc partially hidden
by foliage. Image reproduced from Anderson et al. [2019].

B. Training

Several methods were described in Section I-B which pro-
vide the necessary UQ for high consequence applications, any
of which would be valid for this application. The architecture
of the neural networks is 2 hidden layers with 10 nodes each.
The left half of MLS-1200 was used for training, and the right
half was used for testing.

Let D = {(x𝑖 , 𝑦𝑖)}𝑛𝑖=1, be the training data set where y =

(𝑦1, ...𝑦𝑛) 0 and X = (x1, ..., x𝑛) 0. Let 𝑦𝑖 ∈ {0, 1}, denoting
non-target or target and x𝑖 ∈ R𝑝 be a 𝑝-dimensional vector
of features corresponding to response 𝑦𝑖 . Let 𝜽 denote all the
weights and biases of the neural network. The neural network
𝜋 : R𝑝 → (0, 1) estimates the probability that pixel 𝑖 contains
target as, 𝜋𝑖 = 𝑃(𝑦𝑖 = 1|x𝑖 , 𝜽).

C. Quantifying Uncertainty

Uncertainty on the neural network is measured on its
estimates 𝜋̂𝑖 , which use the trained models’ weights and biases
𝜃. The uncertainty of 𝜋̂𝑖 is obtained in the form of (1 − 𝛼)%
credible intervals (CIs), denoted by B𝜋𝑖 (𝛼).

In order to reduce analyst burden through automation, we
want to know where the model believes, with high-confidence,
whether or not a pixel contains a target. The High Confidence
Sets (HCS) proposed in Ries et al. [2022] provide a means to
operationalize such a process. Formally, the HCS Ω is the set
of pixels such that:

Ω = {𝑖 : (B𝜋𝑖 (𝛼)𝐿𝐵 > 1 − 𝛿 ∪ B𝜋𝑖 (𝛼)𝑈𝐵 < 𝛿)} (1)

where B𝜋𝑖 (𝛼)𝐿𝐵 and B𝜋𝑖 (𝛼)𝑈𝐵 are the lower and upper
bounds of a (1−𝛼)% CI for 𝜋𝑖 , respectively; 𝛿 is a probability
threshold which defines an estimated probability as close to
zero. Both 𝛼 and 𝛿 are user chosen and should reflect the
users’ risk preferences. We choose 𝛼 = 𝛿 = 0.2.

Table I shows the proportion of pixels from the test set
which were included in the respective HCS. There are clear
differences in the results, begging the question: which UQ
method should the decision maker rely on? In the test scene
with over 1.5 million pixels, the 10% difference between
BNN-MCMC and DE corresponds to a difference in HCS size
of 150,000 pixels. This difference can have a large effect on
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Method Proportion of Pixels in HC Set
BNN-MCMC 0.81
BNN-VI 0.27
DE 0.71
Bootstrap 0.78
MC Dropout 0.74

TABLE I: Proportion of test set pixels in HCS for Megascene
for each model.

analysts, but the UQ method with the largest HCS should not
automatically be relied on since it could be overconfident. An
UQ quality assessment is needed.

III. UNCERTAINTY QUANTIFICATION QUALITY METRICS

This section introduces UQ metrics that can be used to
evaluate UQ model performance and help answer the question
posed at the end of the previous section. Some of these metrics
require knowing the complete probabilistic data generating
mechanism, which in real data problems is not generally
known. Therefore the simulation study in Section IV is needed
to evaluate the different UQ methods used in Section II.

A. Frequentist Interval Coverage

Credible intervals contain a set of plausible class probability
estimates, where plausible is defined by the nominal rate of the
interval itself, typically denoted as (1−𝛼)%. A (1−𝛼)% CI for
an estimate should contain the true population parameter about
(1−𝛼)% of the time if the experiment was redone. Frequentist
coverage (coverage, from here on) is the actual rate at which
the population parameter is contained in the interval, averaged
over all observations.

CI Coverage =
1
𝑛

𝑛∑︁
𝑖=1

1
(
𝜋𝑖 ∈ B𝜋𝑖 (𝛼)

�
(2)

This empirical value should be as close as possible to the
nominal rate of (1 − 𝛼)%. Going under or over this value is
an indication of poor UQ quality, e.g. a 90% CI with 70%
coverage indicates the interval is overly optimistic and not
accounting for enough uncertainty. Conversely a 90% interval
with 99% coverage is overly conservative. Note that Equation
(2) requires knowing the true value of the model parameter.

B. Interval Width

Intervals contain values that are plausible estimates for a
quantity of interest, therefore it would make sense that there is
less variability in the data generating mechanism if the interval
is smaller. However, it is not quite this simple. The highest UQ
quality is given to models that minimize interval width and
match coverage with nominal rate. The width of intervals is
given in Equation (3) by

Interval Width =
1
𝑛

𝑛∑︁
𝑖=1

(B𝜋𝑖 (𝛼)𝑈𝐵 − B𝜋𝑖 (𝛼)𝐿𝐵). (3)

C. Expected Calibration Error

Naeini et al. [2015] proposed ECE as a metric to check
whether a machine learning classifier’s confidence scores are
calibrated to true probabilities of correctness. Here we use the
broader term predicted confidence defined as 𝜋̂𝑖 ≡ 𝜋(x𝑖 , 𝜃) ∈
[0, 1], or estimated class probabilities. However, we make
no claim that all models are expected to estimate the true
probability. For classification BNNs, the uncertainty of interest
is on the estimated class probabilities (predicted confidences).

Consider a binary decision rule, 𝜏(·), that generates predic-
tions 𝜏(𝜋̂𝑖) = 𝑦̂𝑖 ∈ {0, 1}. Provided a set of true and predicted
responses, the accuracy is computed as:

𝑎𝑐𝑐(y, ŷ) = 1
𝑛

𝑛∑︁
𝑖=1

1( 𝑦̂𝑖 = 𝑦𝑖). (4)

The average confidence of the set is

𝑐𝑜𝑛 𝑓 (𝝅̂) = 1
𝑛

𝑛∑︁
𝑖=1

𝜋̂𝑖 . (5)

ECE discretizes the interval [0, 1] under equally spaced
bins and assigns each predicted confidence to the bin that
encompasses it. The calibration error of a bin is the difference
between the accuracy and average confidence of the samples
assigned to that bin. In other words, calibration error treats
predicted confidences as estimated probabilities and measures
the disagreement between the estimated and true probability
of correctness. ECE is a weighted average across all bins:

𝐸𝐶𝐸 (y, 𝝅̂) =
𝐵∑︁

𝑏=1

𝑛𝑏

𝑛

���𝑎𝑐𝑐 (y𝑏 , 𝜏(𝝅̂𝑏)
�
− 𝑐𝑜𝑛 𝑓 (𝝅̂𝑏)

���. (6)

where 𝐵 is the number of bins, (y𝑏 , 𝝅̂𝑏) is the subset of
(y, 𝝅̂) in the 𝑏𝑡ℎ bin, and 𝑛𝑏 is the number of predictions in
bin 𝑏, i.e. the rank of 𝝅̂𝑏 .

Calibration informs us of the probability of correctness,
regardless of cause. However, as model accuracy approaches
the limit of irreducible error, calibrated confidences will ap-
proach the true probability of the most probable class. As such,
calibration error can effectively assess the quality of aleatoric
uncertainty estimation. On the other hand, interval coverage
and width provide an assessment of epistemic uncertainty in
classification problems because the credible intervals should
converge to point predictions as estimates of the class proba-
bilities approach the true probabilities.

IV. SIMULATION STUDY

In this section we evaluate UQ metrics of Section III on a
simulated two-class classification (TCC) dataset to compare
different UQ in DL methods, including BNN trained via
MCMC, BNN trained via VI, bootstrapped NN, DE, and
MC dropout. For comparison against a non-DL model, we
also train a GP with MCMC. The TCC dataset is a fully
parameterized generative model with a joint probability that
allows direct evaluation of CI coverage. A full probability
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distribution is needed in classification problems to check CI
coverage. The underlying model is a 2-D Gaussian Mixture
Model (GMM) with two equally proportioned clusters that
undergo a series of transformations and scalings. The result is
a data model that can easily generate a large variety of data
classification scenarios that arise in quantifying UQ. Figure 3
shows one simulated TCC data set and densities. In all, 100
data sets from the same TCC simulator are generated with each
of the UQ methods fit to each of the 100 simulated data sets.
Coverage and widths of 90% credible intervals are computed
for each data set for each method, then averaged over the 100
simulations. For the ensemble methods (DE, bootstrap, MC
dropout), 100 ensembles were used. The architecture for the
DL models was a two layer fully connected NN with 10 nodes
per layer.

Fig. 3: TCC transformed space with 10% contours for 𝑃(𝑌 =

𝑦 |𝑥1, 𝑥2).

Table II shows mean coverage, width, and ECE for each
method with its MC standard error in parentheses. Bolded
terms show the best metric in each column. Overall, BNN-
MCMC does the best since it is the only method to correctly
capture the nominal coverage of 0.9. Bootstrap is a close
second since it slightly undercovers nominal and has wider
intervals than BNN-MCMC. Interestingly, while DE has a
coverage rate much less than nominal, its ECE is comparable
with BNN-MCMC and bootstrap. This could lead to an
erroneous conclusion that DE’s UQ is high quality, when in
fact it is only calibrated, meaning its aleatoric uncertainty is
accurate, but based on coverage, its epistemic uncertainty is
not. MC Dropout appears to help the ensemble, but it still
doesn’t achieve nominal coverage.

Figure 4 shows the prediction surface for one simulated
TCC data set for each model. Figure 5 shows the width of
a 90% credible interval for one simulated TCC data set for
each model. The estimation surfaces for all methods except
the GP are similar. The GP appears to also be measuring the
density of the domain as well as class probabilities, potentially
giving it an OOD measure. The interval widths among all the
methods except GP are also similar. The main difference of
the DL models is that the DE and MC dropout uncertainty
doesn’t fan out as quickly as it departs from training data. This

Method Coverage Width ECE
BNN-MCMC 0.91 (0.04) 0.22(0.01)∗ 0.04 (0.01)
BNN-VI 0.59 (0.17) 0.38 (0.07) 0.08 (0.02)
DE 0.48 (0.09) 0.09 (0.01) 0.04 (0.01)
Bootstrap 0.84 (0.06) 0.25 (0.02) 0.04 (0.01)
MC Dropout 0.67 (0.08) 0.15 (0.02) 0.04 (0.01)
GP 0.98 (0.02) 0.36 (0.02) 0.05 (0.01)

TABLE II: TCC Simulation results. Bolded values indicate
best metric in each column. The asterisk indicates the best
interval width, given the nominal coverage was met (nominal
rate = 0.9).

behavior is expected since DE does not account for sampling
variation. The MCMC and bootstrap plots look similar, and
based on the metrics in Table II, they are the most reliable
NN models.

V. DISCUSSION

There are several results from the simulations that are worth
further discussion. First, DE failed to provide an accurate
measure of the full uncertainty in the simulation. Although the
model was well calibrated (as measured by ECE) compared
to other models, its credible intervals undercovered the nom-
inal rate indicating it is not measuring epistemic uncertainty
correctly. This is not surprising since DE creates an ensemble
by simply using different starting values for each model in the
ensemble. Practically this means the uncertainty the ensemble
is capturing is the optimization uncertainty. Although this
may be of interest in some scenarios, we do not believe this
is the case for most users. However, DE is a simple way
to understand the complexity of the training procedure. In
Lakshminarayanan et al. [2017], the authors say for that there
is little difference between DE and bootstrap when training
sets are large. However, in cases where we are not data-rich,
as in many high-consequence national security problems, we
do not have the luxury of an abundance of data. Therefore,
for high-consequence problems, we recommend to proceed
with caution when using DE, and urge users to understand
theoretically which types of uncertainty DE will measure, and
which it will not.

Simply resampling data with replacement (bootstrap) for
each model in the ensemble gives a theoretically plausible
solution to the simplicity of DE. The bootstrap performed
only slightly worse than BNN-MCMC, giving reasonable
coverage with relatively skinny interval widths and comparable
ECE. This additional step requires no additional computational
burden compared to DE.

Bayesian neural networks fit using MCMC significantly
outperformed BNN fit using VI. Although MCMC is the gold
standard for Bayesian estimation, we hoped VI would have
given better results given the theoretical guarantees it has.
We do note that BNN fit with VI is still a difficult process,
and we believe it is possible better results could be obtained
using different software or VI algorithms. But in light of
this, we recommend caution for non-experts using BNN fit
via VI. VI provides a significant speedup that should not be
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Fig. 4: Prediction surfaces for each model on one TCC simulation. Training data is overlaid.

ignored, therefore future work should continue to develop VI
algorithms and continue to make them more user-friendly.
More research and applications of BNN fit using VI will help
understanding of how to diagnose common training issues.

We can now tie these low dimensional, oracle-like evalu-
ations of UQ quality back to our original high consequence
application in Section II. Although not a causal relationship,
poor results in low-dimentional simplistic examples are often
an indicator that algorithms will not improve as the data and
models become more complex. The originally proposed HCSs
are predicated upon the notion of good quality UQ estimates,
yet our simulation results indicate low-quality UQ estimates
from DE and VI (and MC dropout to a lesser degree). This
would suggest that for more complex modeling tasks, VI and
DE UQ estimates are likely to be of lower quality than a model
such as the MCMC BNN or bootstrap NN.

There are ample opportunities for future work in the as-
sessment of the quality of UQ for DL models. New metrics
should be created that assess the quality of UQ given by DL
models, preferably ones that are more well suited to the DL
framework. Although the traditional statistical metrics used in
this paper are adequate, there are certainly better approaches.
We also argue for metrics beyond combining the two, such as
with the coverage width criterion of Khosravi et al. [2011] or
evaluating coverages at a large number of nominal rates such
as with the continuous ranked probability score from Zamo
and Naveau [2018]. We recognize these metrics are useful in
evaluation too, but they still require knowing the underlying
true probability distribution, which for classification problems
is only possible with simulated data. New metrics will be able
to be used on real data to compare which UQ method to use

for that specific data set, much like model selection is currently
done (where selection only considers predictive performance
of the model). A metric analogue to the AIC, which allows
simple comparison of model fits, is desired to measure the
quality of UQ.

VI. CONCLUSION

Uncertainty quantification of DL models is an active area
of research since researchers and users of DL models have
realized point predictions are not always enough, especially
in high consequence problems. Many different approaches to
UQ for DL models have been proposed, however, there has
been little research into the quality of those UQ methods. We
fit several UQ for DL models on a target detection application,
but looking only at the predictions and uncertainties from
the models does not tell a decision maker which model
best captures the underlying uncertainty. In fact, it introduces
more questions than answers. In an attempt to answer these
questions, this paper explores the quality of UQ given by
several probabilistic UQ models, including BNN, GP, DE,
MC dropout, and bootstrapped NN, using traditional statistical
metrics of frequentist coverage and CI width, as well as
ECE. A two class classification data set, for which complete
knowledge of the data generating mechanism was known, was
used to quantitatively assess the UQ qualities.

BNN trained via MCMC was the clear winner, but this
comes with a heavy computational cost. The bootstrap came
in a close second and may be more practical to use. It requires
the same computation as the popular DE, but appears to
provide higher quality UQ. However, this paper only explores
two specific cases and therefore more research in this area
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Fig. 5: Uncertainties for each model via 90% credible interval widths on one TCC simulation. Training data is overlaid.

is needed, and better UQ metrics need to be developed to
definitively compare UQ in DL methods.
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