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Scope

@ Focus:potentialenergy surface (PES)/inter-atom ic
surrogate constructions
@ PES/IAP surrogaterepresentation and modelstr
@ PES/IAP surrogate param eterestim ation/calibra
with em phasison errorsand uncertainties

@ Multiple motivations
@ Uncertainty quantification (UQ)and globalsensi
moleculardynamics (MD)com putations
@ Minimizing errorsin fitted PES fordownstream u
@ e.gexploration,reaction rate com putation

eUQ importanceisrecognizedin |IAP-based atom isti

FrederikPéiys. Rev. R€xt0 4; AngelikopGhéas. PRYs12; D yt€hem . PRWs18;
Longbott 6M RO 19;Pateve Com p. CKearilliez 2020 ; V/LsE@0R 1;
Zhouand Foiles 2017; Ch érmra.th ews.kilya t2 Rd3.

@ Weignore errors/uncercthiimtigam antum chem istry (Q

density functionaltheory (DFT)com putations
FYI:W afigi. RepO21; Yahagrady DIx21;PraBea¢c. Com b.2A0si3;
KlippenstRiac. Com b.2@sitl; Harg.k@&m p. Chze@il
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Elementsofa PES/IAP Surrogate Const

@ There aretwo key elementsofany PES/IAP surrogat
o A feature vectorthatsum m arizessystem geom e
- Forexamuyjted) : BN — R"
— Whetds aparametervector
@ A function thatmapsthe feature vectorto poten

E(z) ~ f(v(z;0); w)

whenreisaparametervector

@ The functionalfou(ramdf)are im portantm odeling ch
@ Constructionsshould natively satisfy

— translational,rotani¢preabn utationalinvariances
— Permutationalinvariance:swapping two sam e-t
doesnotalterthe system potentialenergy
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Examplesof PES/IAP constructions

@oEmbedded Atom Moded EBAMe}, 1984
° E; = %Z#i Pap (1i;) + Fo <Z#i Pap (Tij>)
o Symmetry Function deeadip baFsello, 2007

@ Geometry descriptorsused with NeuralNetwork
@ AtomicEnvironmentVector (AE¥haaasdruction

@ Gaussian Approxim ation Pobemdidab0GaA P)
@ Geom .descriptor,neighbordensity bispectrum,

Coulomb matrixdescriptor,geom etry andenanolearc

SpectralNeighboranalysis potentiatd&MNAP)
@ Similarto GAP,butwith linearregression

@ AtomicClusterExpangdeant{AQE)
@ Generalizes/subsumesmany earlierconstructio
3D Graph ConvolutionalNetwork (3DcGdGN)descrip!
@ Geometryrepresentationintermsofmolecular:

@ Generalized deep m etric learningtwadthdG N N s
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OurPES surrogaterequirem ents

@ Translationaland rotationalinvariance
@ Relyoninternalcoordinates:

— Distancesbetween pairsofatoms
- Anglesformedamongsetsof3 atoms

@ Descriptorsizeindependentofnumberofmolecule

@ An atom -centric feature vectorconstruction
@ Representlocalgeometry around each atom

@ Permutationalinvariance
@ Additive superposition ofatomiccontributions t

o Sufficientcom plexity to fitdata from differentatom
systemsinarangeofgeometricconformations

@ Generalizability
@ Controlled approxim ation accuracy outside thet
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PES/IAP Surrogate Calibration

@ Leastsquaresregression,withsomemeansofregul
dominantmeansofPES/IAP surrogate calibration

@ Given largenumberofparameters,and limitationsc
datasizes,one expectssomeuncertainty in fitted m

@ Bayesian methods providerobustmeansofestim at
uncertainties,aswellasmodelcom parisons/selecti

@Inacomputationalsetting,use Markov Chain Monte
tosam ple from the Bayesian posterior

@ MCMC isfeasiblein high-dimensionswhen deali
thatare linearin param eters

o lthasseverecomputationallimitationsin high-d
nonlinearmodels

@ Arangeofheuristic/approximate methods exist|
challenging setting
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Dealing with ModelErrorin UQ

@ Allmodelsarewrongin principle

@ Modelsofphysicalsystem srely on

@ Presumed theoreticalfram ework
@ Mathem aticalform ulation

@ Practicalmodelsofcomplex physicalsystemsrely o
@ Sim plifying assum ptions
@ Num ericaldiscretization of governing equations
@ Computationalsoftware & hardware

@emodelerrorisfrequently non-negligible

@ Estimating modelerrorisusefulfor

emodelcomparison & validation
emodelimprovement& scientificdiscovery
o reliable com putationalpredictions

SNL Najm UQ-AL-MD 9/48



Challenges with ModelCalibration due t

e o Data,N=5 2.0
== Truth

= Model prediction

1.8

1.6

Az

1.4

1.2

1.0

X 0.4 0.6 0.8 1}\0 12 14 16 1.8
1

Conventionalparam eterestim atipp=< 6(mte)xtey

Additionaldataresultsin reduced param eteric poste
Onegetsmoreconfidentaboutpredictions with the
Predictive uncertainty in calibrated modelhasno uti
Ignoring modelerrorleads toirrelevantpredictive et
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Challenges with ModelCalibration due t

® o Data, N =20 2.0
== Truth
= Model prediction

. 1.8

1.6

1.4

O 1.2

1.0

X 0.4 0.6 0.8 1}\0 12 14 16 1.8
1

Conventionalparam eterestim atipp=< 6(mte)xtey

Additionaldataresultsin reduced param eteric poste
Onegetsmoreconfidentaboutpredictions with the
Predictive uncertainty in calibrated modelhasno uti
Ignoring modelerrorleads toirrelevantpredictive et
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Challenges with ModelCalibration due t

@ o Data, N =100 2.0
== Truth

= Model prediction

1.8

1.6

A,

1.4

1.2

1.0

X 0.4 0.6 0.8 1}\0 12 14 16 1.8
1

Conventionalparam eterestim atipp=< 6(mte)xtey

Additionaldataresultsin reduced param eteric poste
Onegetsmoreconfidentaboutpredictions with the
Predictive uncertainty in calibrated modelhasno uti

Ignoring modelerrorleads toirrelevantpredictive et
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Statisticalm odelingofmodelerror

Errorframework:

Measurem ents: Ydata= Yerutht €4
Modelpredictions: Yeru tF= Ym o d & €m
Thus: Ydata Ym odell €m T €4
4
Errormodeling —exam ple
Model: Ym od et f(z,A)
Data Error: €q ~ N(0,0?)
ModelError: €n ~ G Ru(z),C(z,z"))

.

Modelcalibration: J

Estim ate modelparhatcertgns ith thasecp f

Kennedy & O'Hagan 20 &tlg B 8ya2ri

SNL Najm UQ-AL-MD 1/48



Challenges—PhysicalModels

@ Arbitrary choice of statistecg®rR Jospaltfal structure doe
nottake the physicalmodelinto acct

— Potentialviolation of im plicitconstraintsin physi

—e.gincom pressib&flow0
o Difficulty in disam biguation ofmodel& data error

@ Calibration of modelerroron measured observable
quality of othermodelpredictions

SNL Najm UQ-AL-MD 12/48



ModelErrorEm bedding

@eEmbedmodelerrorin specificsubm odel!:)rln nom.eil
@ amodified transportorconstitutive law
@ amodified formulation fora materialproperty
Sargsydd @019 ;Hakif 0 18, H WA A2JO 18 ; S arg $/Cad0 15

@ Pros:

o Allows placementofmodelerrorterm in locatior
modeling assum ptionsand approxim ations are 1

@asacorrectionorhigh-orderterm
@ asapossiblealternate phenomenology

@ exploreifitcan explain discrepancyonobservab
@ naturally preserves modelstructure and associat

@ Cons:
@ com plex likelptgodlor general nonflin&zy,)

SNL Najm UQ-AL-MD 13/48



Case Study: Bayesian Calibration of AP

@ Arun Hegde and Cosm in Safta (Sandia Nat.Labs.)
@ Elan Weissand Wolfgang Windl(O hio State U.)J

@ Focuson Embedded Atom Model(EAM) potentialf
@ (Au,Cu)
@ Bayesian calibration of EAM potentialwith DFT data

@ Forward propagation of IAPuncertainty in MD simu
LAMMPS

v

® SQS (compositions)
e numerical tolerances

Element A and B Info o cte.

RAMPAGE ] X
# *‘ potential }—*‘ LAMMPS }—» £(0)

SNL Najm UQ-AL-MD 14 /48




EAM potential

@ RAMPAGE/EAM potentialsforbinary alloys (W ard 2
o TwoelementsPpes

Given atoof typec { A, By and atgmf typikc { A, Blwe have

B, = Z a,8(riy) + Fo (Zpaﬁpw)>

J#l JFi
ppa(r) = 1°(exp—S,r)+2°exp-25,7))
paplr) = r6 (exp—Sgr) +2%exp—25gr))

Vyup(lr) = D(exF(—Qa (rfreq» —2exp(fa (rfreq)»

with param étefs,, D,a,5,,Sp).

SNL Najm UQ-AL-MD 15/48



Calibration problem setup

@ Predictive mg defl{z;0)where

x € {discretesetofcom gositions

Qol € {lattice cons€n€;5,Cyy,bulk modutuizing enthalpy
0 = (Qq,D,Oé,SA,SB)

e Datamodel:
fi(x;0) + 6()

() N(0,0%f;(x;0 ¥ +7%) forQodmixingenthalpy
i N(O,Uin(I;Q)Z)

otherwise

@102 calibration targets: 6 Qolsateach of17 com posi
o DFT datagenerated foreach targetquantity

@ Weuseuniform ptigrdonsSy,Sg,lno,ln7)

Najm UQ-AL-MD 16 /48



ModelSurrogates

@ LAMMPS expense necessitatesuse ofsurrogates fo
@ Modeloutputsexhibitcomplexbehavior,and patho

1

snjnpow }|ng
Lattice parameter

Sa D

@ Webuild Gaussian processsurrogates foreach of th.
—superioraccuracy relative to Legendre polynomii
@ Usingrandom ly sam pled train/testdata,we adaptiv
surrogate hypercube to ensure
— targetsurrogate accuracy
—surrogate hypercube contains posteriorsamples

SNL Najm UQ-AL-MD 17/48



BinAll
Posterioron modelparameters

2.6 2.7
@ MarginallD post [ ]
are nearly Gaussi~
@ Posteriorparam e

.
uncertainties are l

w ith C GX\%

. s| N '
@ Marginal2D post j\m s
revealpairwise '
correlationson v. % 4 e[|\
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BinAll
Posterioron modelparameters

4.2
= !
S 4.0
[
1S
o
8 3.8+
S
E 3.6
¢ MAP
3.4 e DFT

0 3 6 12 18 25 31 37 43 50 56 62 68 75 81 87 93 96 100
% Gold (Au)
Push-forward posterior (PFP,right)and Posteriorpredictive (PP, le
@ Significantmodelerrorsobserved with variouscom
o PFPwidth smallw.r.t.discrepancy between MAP pre

@ PPdoesencompassthese discrepancieson average
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BinAll

Posterioron modelparameters
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BinAll

Posterioron modelparameters
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BinAll
Posterioron modelparameters
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BinAll
Posterioron modelparameters
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BinAll

Posterioron modelparameters
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Conclusions—Binary Alloy Study

@ Asmaybeexpected,the sim plicity ofthe EAM pote

to sigificantdiscrepanciesinthe MAP modelpredict
These discrepancies are captured on average by the
predictive (PP)acrossallQols/com positions
Atthesame time,the PPuncertaintyismuch larger:
observed discrepancy

Improvements to thissimple additive model-errorc
using Qol-specific GP corrections (ala Kennedy & O’
reduce this mistach

Furtherimprovements,usingembedded modelerr
willalsoim provethe PP on otherQols,e.g.forces

Datacuration aswellasimproved autom ated conve
would helpreduce datapathologies,improve surrog
enhance overallfidelity of the Bayesian calibration

Najm UQ-AL-MD 20/48
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Yoona Ya€arles MajtditZadand MichaelBldred
Sandia NationalLaboratories
Livermoré,&Albuquerqu®e,NM

4

@ Focusonneuralnetwork (NN)PES with feature
Behler & Parrinello sym m etry functions

@ Atomicenvironmentvector (AEV)construction

@ Active learningusing Query by Com m ittee (QBC

@ Force training

Case Study: PES forHydrocarbon Molec

vect

@ Multifidelity training

Najm UQ-AL-MD PAVER:]



HC

PES forGlycolaldehyde

Potential Energy (kcal/mol)

Molecularstructure PES of glycolaldehyde with variation in the
angles (02-C2-C1-01,2-C1-0O1-H 3

Najm UQ-AL-MD 22/48



HC

Sym metry Function AEV construction

Theneighborhood geom etry around each atom isrepre
fixed length atomicenvironmentvector (AEV)descript

@ AEV lengthisindependentofthenumberofatoms
o lt'sdefined by specifying:

@ Thesetofallowed atom ic{tyld,©g,e.g.

eThe specified sym m etry functions

N=m+n

N=9; |=3N=27
X—(X1 ,,,,, Xn)
X=(x,Y32)
N=10; 1-3N=30
M . @ Yi = WigrYind)
. —

AEV vector
N=8; |=3N=24 Fixed size M

AEV function For any atom i
X for atom i
Coordinate vector T=(Tyus Ty)

SNL Najm UQ-AL-MD 23/48



HC

Sym m etry Functions capture localradia

e Radial SFscapture atom -type
neighborhoodindep of orien‘t

— Pair-wise interactions 50

y}T?,,z‘:U Z ein(R”ip)zfc(Rij) Zou

psn JES T, 5#i .
@ AngularSFssimilarly capture 3
type-specificangulargeom etfy in auiimemmis

plane,with radialweighting

5 6

with second atom at (1,0) with second atom at (2,0) with second atom at (3,0)

3 3 3

2 2 2
E E E
-] -] 2

! ! !
£ £ £

5 0 5 0 5 0
< < <
s s s

g1 £ £
2 2 2

>-2 >-2 ]

-3 3 -3

3 2 2

- 1 102 3
x-location of third atom x-location of third atom x-location of third atom

. CC CH HH
e.gforatoimm a{C,H}system y, = (y5., U5, YA,  Yass Uas) € RM

SNL Najm UQ-AL-MD 24/48



HC

AEV illustration forone atom ina é-ato

AEV Analysis
25
20
S1s
z
<
10
0s
ool
AEV element index
c H | c =Y HH
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H

NN PES setup féoIr molecule in a {C,H}sy

)
S0 S

. AR )
: 'i‘“*\’/'";‘é\v ¢
RO

O

8Oy
N
\\!/, E= Ec1+---+ECm

SR
SRS

QYA

Potentialenergyisthesum of outputsofatomic-type-specif
Onedata poinjlkd&Lrtesian-coB)ds,
Feed forward NN MLPs;Gaussian activati®yTdrchctions;using

Construction f6Homdt a,l20 17.
SNL Najm UQ-AL-MD 26/48
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HC

Sam ple training foramolecular{C,H}da

62,829 samplesof{C,H}r S 125
CH; | 8469 5 -
CH, | 7200 o £
CH | 5400 g ]
C,H; | 20160 ER E
CH, | 5760 £ f z
C,Hs | 12960 = £
CH, | 2880 . -
e Datarandom ly shuffle [ i i oo i g
L . 1 10 100 1000 10000
@ Training:80 % ,testing Epoch
©256-long AEV SGD Training ErrorDecay
@ NN com plexity:3 hidden layersw (128,128,64) neur
@ Activation: Gaussian
LHidden
@ Totalno.of2-NN para?nxegrﬁ\fe(Né,l—i—l):115,328
=1

SNL Najm UQ-AL-MD 27/48



HC

Learning the PESIforC

Above database:smallchangesaroun

W e focuson multiple basins & transiti
@ Generate training datarelying on:

@ PES exploration withidim Boort/zadorlal
e Normalmoderandom sampling

@ Active learning using query by&B @i ivicc
@ DFT computations usingw® Ghedmn .com

@ Training with ADAM ,w i
test-errorisused to in " Enrich Train™ e
e the learning rate scEiEEE \
o the stopping criteri Label ) |
o Targeterrorbelow 1kc i uq "v"’M'c::
@ “chemical”accurac Enemie ot

Query Unlabeled
Select -
B3th of unigpge

S3mples witp highest
Predictive Uncertajng,
y
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HC

Active Learning (AL)

@ Goal:improve modelfitby addingdatawhere teste

@ Since the truth away from trainingdataisunknown,
somestim adéthe prediction error

@ Uncertainty in the prediction from the fitted model
surrogate forthiserror

Ideally,the modelcan be fitted using Bayesian infer
push forward posterioruncertainty used asthe error

@ W hile thisis generally feasible in low-dimensionala
models,itisunfeasiblein deep NN (DNN)models

@ Arangeofmethodshavebeenused to provide appr
estim atesof predictiveuncertainty in DNNs
Gaw likoveshkjiarXiv:2107.03342,202

oWewillfocushereonensemblemethodsemployin
randomized weightinitialization and datasubsettin

SNL Najm UQ-AL-MD 29 /48



HC

Active Learning:

selection of training configurations

membership query synthesis

model generates
a query de novo

stream-based selective sampling

instance
space or input
distribution

_____ sample an__ _ _ >O—

instance

model decides to
query or discard

_____ sample a large _ __ _
pool of instances u

pool-based active learning

model selects
the best query

query is labeled
by the oracle

B.Settles,“Active learning literature survey”, Com puter
Report1648,University of Wisconsin-Madison,

SNL Najm

UQ-AL-MD
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HC

Query Strategies:

almostallrelyonsomeform ofuncertai

@ Uncertainty sanaplingive learnerqueriestheinstanc
which itisleastcertain how to label.

@ Query-by-com nvittereittee of com peting models, a
query aboutwhich they mostdisagree.Needamea
disagreement.

o Expected model ahhinpgefuery would lead to greates
change,e.g.largestgradientlength.

@ Variance Reduction and Fisher Informm abi@inRatie:
variancecomponentofgeneralization errorestim at
Inform ation)

o Estimated errorredutithoante the expected future err
would resultifsomenew instance xislabeled and ac
set,and then selectthe instance thatminimizes tha

Najm UQ-AL-MD 31/48



HC

rni
tive Lea
dUQ-Informed Ac
e

PoolBas

Train Mode| baseq on
Add Iy labe| d available labeleg dat;
Newly labe e .
Samples tq training set EanCh
ata
Labeled D Estimate Predictiye
- = .
uncertalnty at unlabeled data
. Fully Bayesian =McCmc
La bel UQ . Variational Bayes
Labe| selecteq Ensembles - Qsc
unlabeled Sampleg

Unlabeled
Data Pool

Query

Select batch

Unlabeleq
ampleswuh ighest
Predictiye certainty

32/48
-AL-MD
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HC

Query By Com m ittee (QBC)

o TraiMlearners,,N.NNN,

@ Randomize initialweightsand datasubsettingam o1
o Use scatteMpfedictionsasasurrogate forpredictive
@ Learner-average prediction providesarobustlow-e

Unlabeled Data Pool

Training Prediction

Training Prediction

Labeled Uncertainty
Data Estimation

Training Prediction

Training Prediction

Training Prediction

Learners

Label Data Select Data

Najm UQ-AL-MD 33/48



HC

Two-Basjd,€ystem fitting

—~1.213e5 Mmode=0, 651852522582601400082w

@ Two-basinsand theconne« ™[§ g
reaction path overthe tran: ™|} 1
state lh s 1

e Trainingusing @BC active le5 | i . )
with 5 NNs I T T

~30K data points . i" "i
i

o DFT testdataisgenerated | —
normalmoderandom sam ...... - enes nssom!

10 @ NN

e Dataiswellcaptured by the |, ", .o
prediction from 5 trained Nz » s
@ Testsdatain basins,aswi
transition stateregions

Arrhenius for Well 1 to Well 2

£ 107

10710 .

Rate Coefficient (Lis)

10

@ Reaction ratesestimated u -
[ ]
NNPES orDFT agreeovera “jm ois oon oon  oow oo
1/Temperature (K)
range of tem perature ’
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HC

Advantagesofforce training zHtwyshamin

o DFT provides eraarg’
forcesVE(xr)) " — e

100 —— E+F (100)

@ Force dataadds sigr _
inform ation on the £y
PES shape

102 4

test L2 (kcal/mol

@ In principle should r ® 5]
dataneedsforagiv

100 4

@ Trainingon both en
forcesis asignifican epochs

© Optim izerneed.s the NN:(128.,128,64) Gaussian
NN & AEV Hessian

@ Used C++ & autom atic
differentiation

@ We fiRldxreduction in dataneeds forthe sam e teste

Najm UQ-AL-MD 35/48



HC

Advantagesofforce training zHtwyshamin

—§— ETrain Energy test error
102 —4— FTrain Energy test error
—4— ETrain Force test error
—{— FTrain Force test error
<
©
§ 10t
©
I
-
©
£
=
©
5]
=
E 10°
w
107!
10?
Data Size

@ ~10xreductionin testerrordue to force training

SNL Najm UQ-AL-MD 36/48



Closure

@ Described AEV-NN modelsaspotentialenergy surf
atom istic modeling

@ Theformulation of more expressive descriptorsis ar
areaofwork

@ Graph CNNscoupled withinternalcoordinates a
candidates going forward

e Wedemonstrated the accuracy ofatrained NN PES
computationson asubsetofthe potentialentlgy la

oeUsedUQ informedpoolbased QBC active learn|
selection

@ Wesee force training as providing significantsaving
numberofDFT/QCruns

@ Using force training doesentailmore data perstr
m ore costly training

SNL Najm UQ-AL-MD 37748



Case Study: Refractory Alloys

Logan W illlakhachik Sargsyan

Mitchell W2doary Alice Custahiddidan Thot pson

Sandia NationalLaboratories
Livermoréd,&Albuquerqu®e,NM

4

eUQ in MD simulationsofrefractory alloys

—relevantin fusion reactorwall-m aterials design
@ Bayesian calibration of SNAP potentials with D F|T dz
@ Forward UQ in MD simulations

@ Attribution of errorsand uncertainties

SNL Najm UQ-AL-MD 38/48



FusM af

Spectralneighboranalysispotential (SN

@ Usebispectrasfingerprints

@ hypersphericalharmonics
@respectsrotational,permutational,translational
eincorporatesenergy,force,and stressdata

@ tunable com plexity/order

E(x) ~ chBk(x)
k
Thom pgoGom put. PhQ 35
@ Uses linearregression

@ generalized to quadratic form as well
W oo/dChem.PRys18

o Wewilltargetcom putationsofalloysinvolving Zr, W
—underarangeofconditions
o Willuse VASP forDFT com putations & LAMMPS for
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U tilization of U Q

Model Selection

Active

Learning

Bayesian Inference Forward UQ
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Bayesian Estim ation of SNAP IAP Param
e Demonstrated Bayesianinference oflinearSNAP p.
with adaptive Markov chain Monte Carlo (AMCMC)

@ Posteriordensity quantifiesuncertainty in SNAP pa

@ Uncovered correlationsamonguncertain param ete

\\ 16

Fit

\ » o I'Ji’“l'w”

0
/’ \\ :Z -16 {
4 NP
Ss w0 ® om0 = Y Dgi’o o8 6

MarginalposteriorPDFson SNAP m®NAIP fitwith posteriorpredictive uncertail
parameters,showinguncertainty and k6 detation
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Bayesian Estim ation of SNAP IAP Param

~1000
2000
" 3000

4000

5000

""" 6000 000 2000 -

6 08 00 08 16

— y=x P i yx
s140
. s
sz P,
s60
13 P
—s1s0
i
5200
-1 s
,/
5220 /
117 p
e
1
570 5720 5200 5180 5160 5140 5120 ~Tiez 117 1170 1167 118 i1 11
oFT oFT

@ Posteriorpredictive uncertainty spansdiscrepancy \
undersome,butnotall,conditions

@ Complexdiscrepancy landscape,and non-uniform
@ Explore customized dataweighting,and modelerro
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Training setselection is crucial

000

@ Example: W -H (tungsten/hydroge%ooqga%g *® 3
@ ToplnitiallAPsresulted in hydrogei1 Y
inbulktungsten,whichshouldnot QO?FOO
0%’

o MidAdditionaltrainingdatawasgen
and added to training set —_—
® ..'o.o.o
e Boitincluding these specific con figtselsegee’ i .
prevented unphysicalhydrogen cl o:oﬁé@ L %% |

Tungsten:Grey,Hydrogen:Green

Results from Mary Alice Cusentino (SNL),u
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Active Learning — Progress

@ Explored differentmeansofestimation of predictiv
@ FullBayesian solution —analytical& MCMC
@ Variationalinference
@ Ensemble meth@gdsery by com mittee (QBC)

@ Developed active learning capability using QBC
@ Train multiple learnersw/randomized datasubsets & |
@ Estim ate predictive uncertainty using scatterin learne
@ Use average prediction asbestestim ate

Griewank with dim = 32

3x10-2 1 -@- passive
—@- active

2x1072

f(x)

Testing Error (RMSE)

== True function
—— Ssurrogate
® Training pts

-20 -15 -10 -05 00 05 10 15 20
x

10! 10? 10°
Predictive uncertainty is high in # data pomts .
Y g - ALdemonstration on NN learning of ir
high errorin fitted function . . .
g problem in 32 dimensions
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Active Learning Im plem entation

Generate pool of
unlabeled structures
MD, genetic algo, etc.

Initial dataset: Evaluate random
structure -> Energy, | and/or structures
forces, stresses VASP

Structures with
Coefficient the most uncertain
covariance Evaluate prediction ) predictions
uncertainty
on unlabeled pool

Cluster and select
structures from pool

Run VASP to
calculate properties
on chosen structures

Structures: energies, forces, stresses
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Preliminary Observations: ALin HEA:Ta

@ Energy,force,and stressdataincluded

@ Poolincludes:

— Ab-initio M D (AIM D7 &8608 -a 8200K
— Elastic,Volum etric,and Uniaxialstrain data
— Surface data with differentorientations 100,111,

@ The starting training datahad some highly decom pr
Strain structures,

@ The firstsetofstructureschosen were alleitherVolu
Uniaxial Strain structures

— AlmostallVolum etricand Uniaxialstrain structu
the entire time were forcom pressed structures

o Afterthis,the AL algorithm choosesalmostexclusiv
from a high-tem perature (3200 K)AIMD set
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Refractory Alloys Closure

@ Outlined results with Bayesian estim ation of SNAP 1
coefficientswith DFT data

@ Results highlighttheneed formodelerrorrepresent
— Moreaboutthisin Thursday talk by Khachik Sarg:

o Weareworking with poolbased UQ -informed AL re
Bayesian posterioruncertainty in SNAP coefficients

@ Preliminary results with ALon high entropy alloy are
confidencein the performance ofthe construction

oeWewillinclude modelerroruncertainty accounting
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€Conc
Conclusionsand Comments

@ Discussed three case studies with differentPES/IAP

@Embedded atom model
e NN+Atomicenvironmentvectorbuilton symm e
@ Spectralneighboranalysis potential

@ Outlined utility of UQ and active learning

@ Param etriclAPsand pre-designed feature vectors w
degreeofmodelerrorthatneedsto beaccounted fc

@ Graph CNNs,operatingdirectly oninternalcoord
interesting path forward in molecularsystem s

eUQ willplay anim portantrole in errorattribution in_
modelselection

@ ForwardUQ in MD willnecessitate the use of m u ltifi
m ethods
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