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‘ Crystallography of solids & x-ray diffreiction_princip-E L

Solids with crystalline structure

X-ray crystallography

 Formed by atoms, molecules, or ions .
stacking in 3-dimensional space with a
regular & repeating arrangement .
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= - D b %
.

Body centered cubic (bec)

Face centered cubic (foc)
Hexagonal close-packed (hcp)

» Lattice directions and planes

« Miller indices are the reciprocal intercepts
of the plane of unit cell axes

Miller indices
in cubic crystals

Beam of x-rays strikes a crystal & causes beam to spread
into many specific directions

From angles and intensities of diffracted beams, 3-

dimensional picture of the

Bragg’s Law:

Coherent reflections will occur
for wavelength and crystal d-
spacings that satisfy the
condition:

nA = 2dsin0

The scattering angle (half-
angle of the Debye-Scherrer
cone) is:

p=20

corundum
powder

Debye-Scherrer
Cones:

llluminate a polycrystalline
sample with a
monochromatic x-ray
beam, scattering patterns
called Debye-Scherrer
cones are observed.

A huge number of crystals
are randomly oriented,
hence there is a large finite
number of them with the
correct orientation reauired

stal is obtained

lysoyme
protein

Laue Spots:

llluminate a single crystal
sample with a continuum x-
ray beam, discrete reflections
called Laue spots are
observed.

For each set of reflecting
Bragg planes in the sample,
the wavelength requir- d to
meet Bragg’s Law 2yist
because of the contin. ous
nature of the x-ray source
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A-ray airiraction (ARv) to Infer aynamic materia

properties

Goals
« Characterize both phase transitions and
their kinetics that occur in dynamically @ =
compressed condensed matter on ns time &, | |5
scales and nm spatial scales 5 attee |
 Determine at atomic scale how materials BEF BINE: Y'Y
behave under extreme pressure & | - __ pressure gradient

A e eT———

temperature conditions; velocimetry gives
only continuum scale information

Approach
* Produce source x-rays with flash x-ray diode

» Generate high-pressure state with Thor
pulsed-power driver

* Detect diffracted x-ray pattern with image
plate




‘ Review of Thor components and operation m
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Qross-sectional schematic of Thor-XRD setup

Geometry of input x-rays to load panel and diffracted x-rays
» XRD load on south panel; drive load on north panel

» Current flows on panels’ inner surface perpendicular to plane of view
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diffracted south V\;il;]agow XRD i X-ray
image f—~<%° sample diode head
plate

[ R Mylar insulator
- w— - -
&« — ~ transmitted
X-rays
PDV/VISAR ~ Morth
panel

E window
1

)
4
"

i

drive load



‘ Flash x-ray diode system m

Combination of existing and new hardware
» 35-stage Marx bank high-voltage pulsed power generator charged to 30 kV
* Needle-and-washer electron beam diode via high-voltage coaxial cable

* Select anodes to produce various K, emission
* e.g. Cu: 8.0 keV; Mo: 17.4 keV, Ag: 22.1 keV

 Line and bremsstrahlung x-ray emission within 30
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X-ray source parameters and performance
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Design of right-angle diode head m

Conical x-ray diode head with 90° bend in transmission line
* Mounted directly to central power flow (CPF) feed plate

 Laser alignment to XRD load

washer

laser cathode :
alignment neec

cavity

X-ray
collimator




Implementing x-ray diode onto Thor m

New hardware to accommodate x-ray diode, load panel, and image plate

» Modified central power flow plate

» Larger load chamber with opening x-ray diode L
» Conical x-ray diode head with 90° turn .

* Sheet load panel cut by waterjet




‘ Design of Thor-XRD experiments
LASLO? simulations to design drive pulse shape and x-ray
timing
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‘ Thor Expt. No. 77: Al panel, Zr sample, TFZwind-E -

Initial Thor-XRD experiment sample TPX
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Integrated Signal (a.u.)

Thor Expt. No. 77: pressure history and x-ray timim

X-rays timed near peak of ramp
» Drive load peak pressure of 11 GPa

Thor Expt. No. 77: drive load AI/LiF pressure history
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Thor Expt. No. 77: XRD measured Zr lattice comm

Similar static and dynamic XRD patterns
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Recent Thor-XRD experiment

*  VISAR/PDV only measure VC free surface

Thor Expt. No. 154: measured current
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Thor Expt. No. 154: pressure and phase fraction hm

Phase transformation kinetics model for CdS amblent wurtzite and high- Dressure
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Dynamic XRD pattern clearly shows new set of Laue spots

* Spots along central axis are from “symmetry plane reflections” and off-axis spots are from “out-of-plane
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I_mprovements to Thor-XRD

Fielding Thor-XRD components

« Repeatability of IP data
* Kinematic holder

* Registration fiducials

* Mounting x-ray diode head to precision
multi-axis stages within Thor load chamber

* Laser alignment reliability
* Higher ramp pressures

Increasing x-ray flux

* Polycapillary lens XRD Ve
« X-ray flux gain vs. pinhole: 100 - 1000

« Transmission XRD ... S
Pressed powder samples

* Fine-tune fabrication process

From D. Morgan

* Thinner pellets thin Al

power flow



Upcoming Thor-XRD experiments

Single-crystal samples
* Investigating a-axis CdS samples

* Phase transformation kinetics with XRD at
various times along ramp profile

* Modifying pulse shapes for varying ramp
rates

Pressed powder CdS
* Varying particle sizes

Polycrystalline samples
- Metals: e.g., Zr, Bi, Sn, etc.
- Powders: e.g., CaF,, TiO,, etc.

-

Thor - pulse shaping
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Summary

X-ray Diffraction on Thor M

* Designed and implemented XRD capability on Thor

» Timed x-rays to ramp wave profile

* Dynamic XRD measured lattice compression of Zr sample

* Measured phase change of single-crystal CdS sample with
dynamic XRD

On-going Developments
* Multiple technical improvements
« Continuing Thor-XRD experiments
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