

Sandia
National
Laboratories

Coupling optimal experimental design and optimal control

Rebekah White[†], Bart van Bloemen Waanders[†],
Arvind Saibaba[‡], and Alen Alexanderian[‡]

[†] Sandia National Laboratories, org. 1441

[‡] North Carolina State University

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

What is optimal experimental design?

tells us when, where, and how to collect data to maximize information

Digital twin problems

Limits on data collection

- Feasibility
- Cost
- Inaccessibility

Data

- Physical property information
- Decision making
- Determine control strategies

Why is OED challenging?

How to characterize information in data?

Optimization
constrained by an
inverse problem
constrained by a
PDE

Goal: estimate model parameters

$$\pi(\theta | \mathbf{y}) \propto \underbrace{\pi(\mathbf{y} | \theta)}_{\text{likelihood}} \underbrace{\pi_{\text{pri}}(\theta)}_{\text{prior}}$$

$$\pi(\mathbf{y} | \theta) \propto \exp \left(-\frac{1}{2} \underbrace{\|f(\theta) - \mathbf{y}\|_{\Gamma}^2} \right)$$

Model – often expensive to compute partial differential equations (PDEs)

Our approach

minimize uncertainty directly related to prediction and control objectives

Goal oriented OED

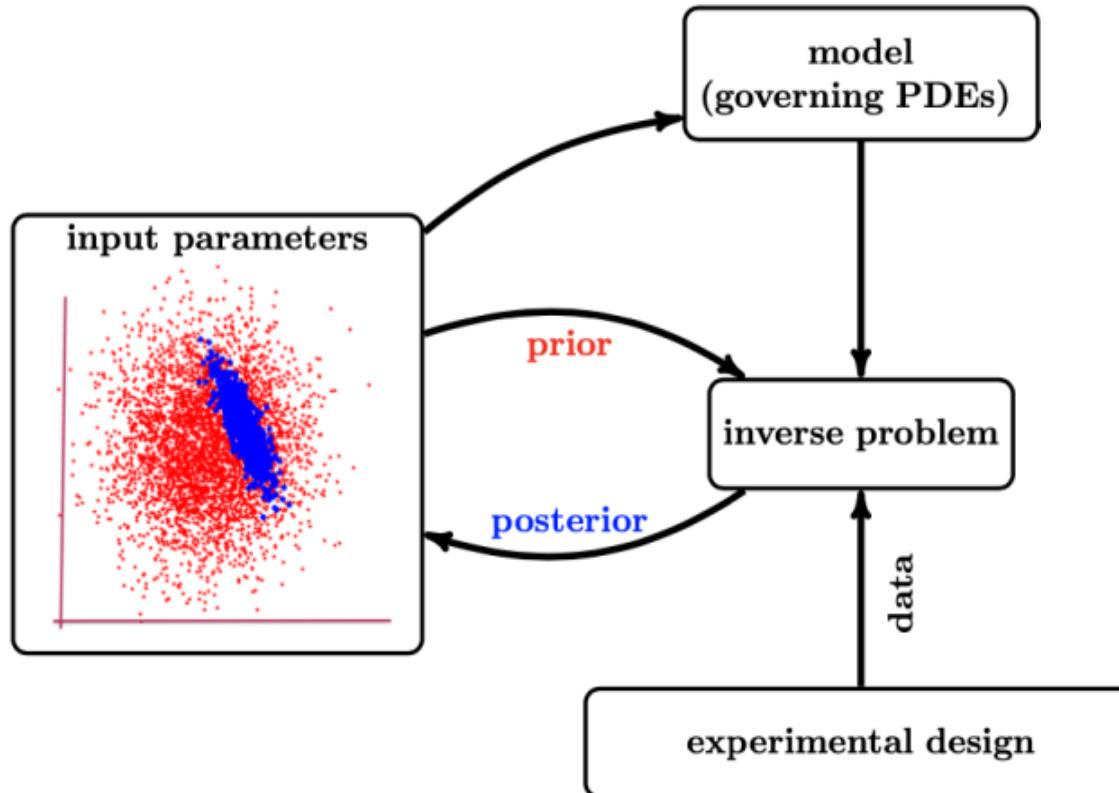


Figure: overview of Bayesian OED[‡]

[‡] A. Alexanderian. Optimal Experimental Design for Bayesian Inverse Problems Governed by PDEs: A Review

Why are goal-oriented approaches beneficial?

Stationary advection-diffusion example

$$-\nabla \cdot (a(\mathbf{x}, \theta) \nabla u) + b \nabla u = f, \text{ in } \Omega = [0, 1] \cup [0, 1]$$

$$u(\mathbf{x}) = 0 \text{ on } \Gamma_D$$

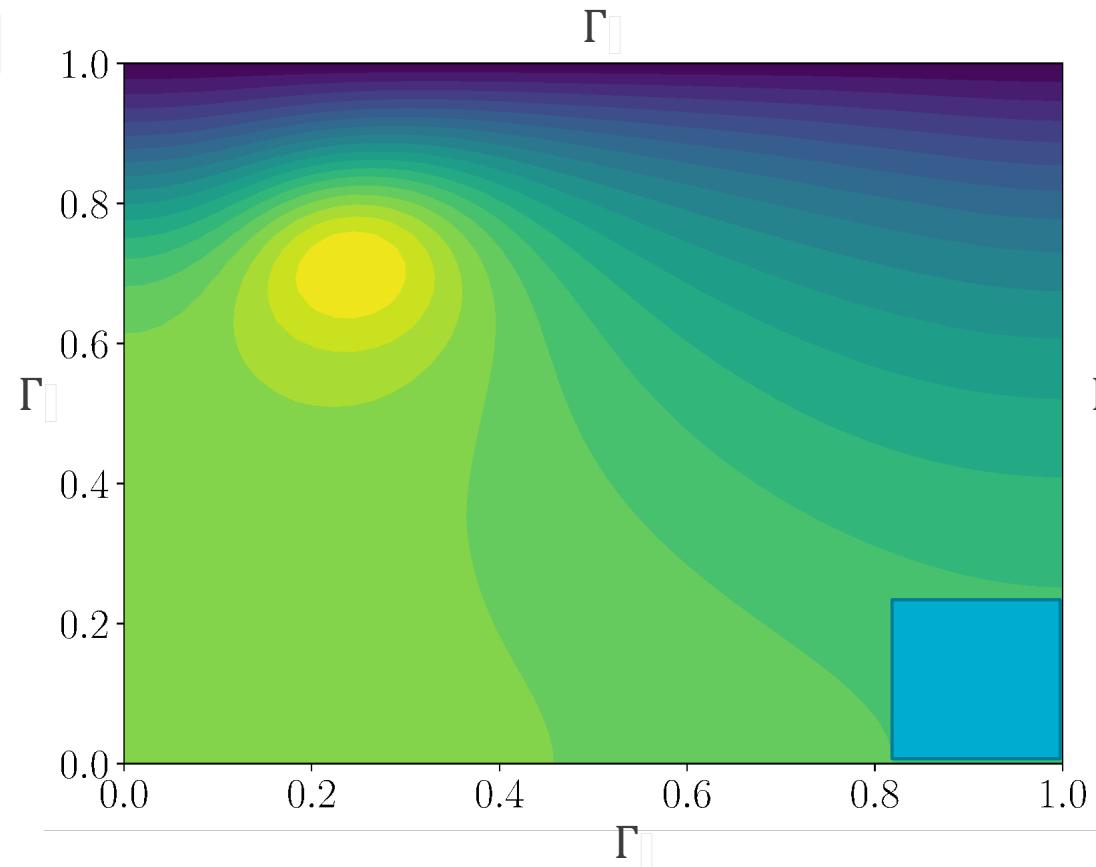
$$\nabla u(\mathbf{x}) = 0 \text{ on } \Gamma_N$$

What is the best way to collect data:

Estimate model parameters θ

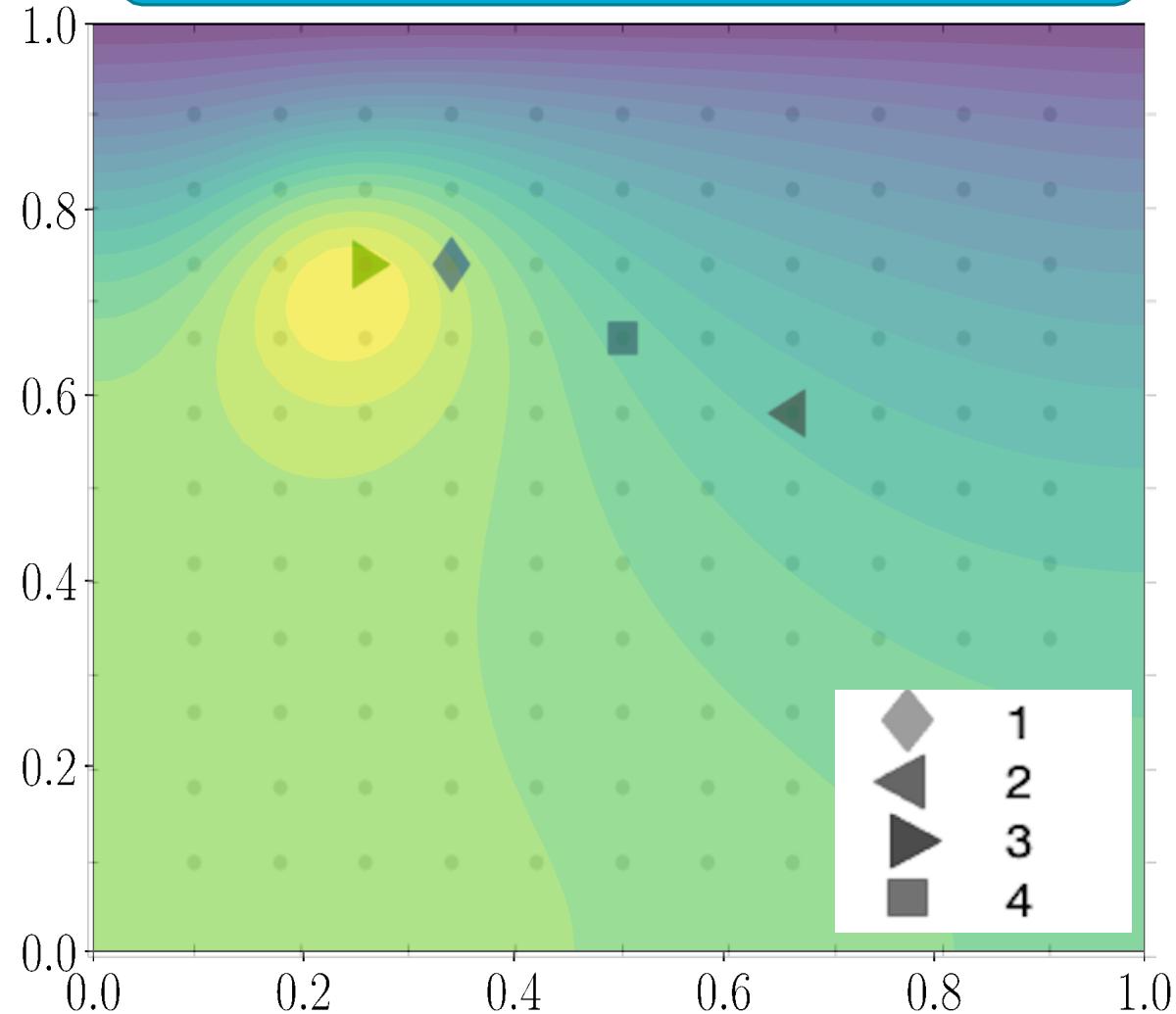
vs.

Improve prediction accuracy in lower right hand corner?

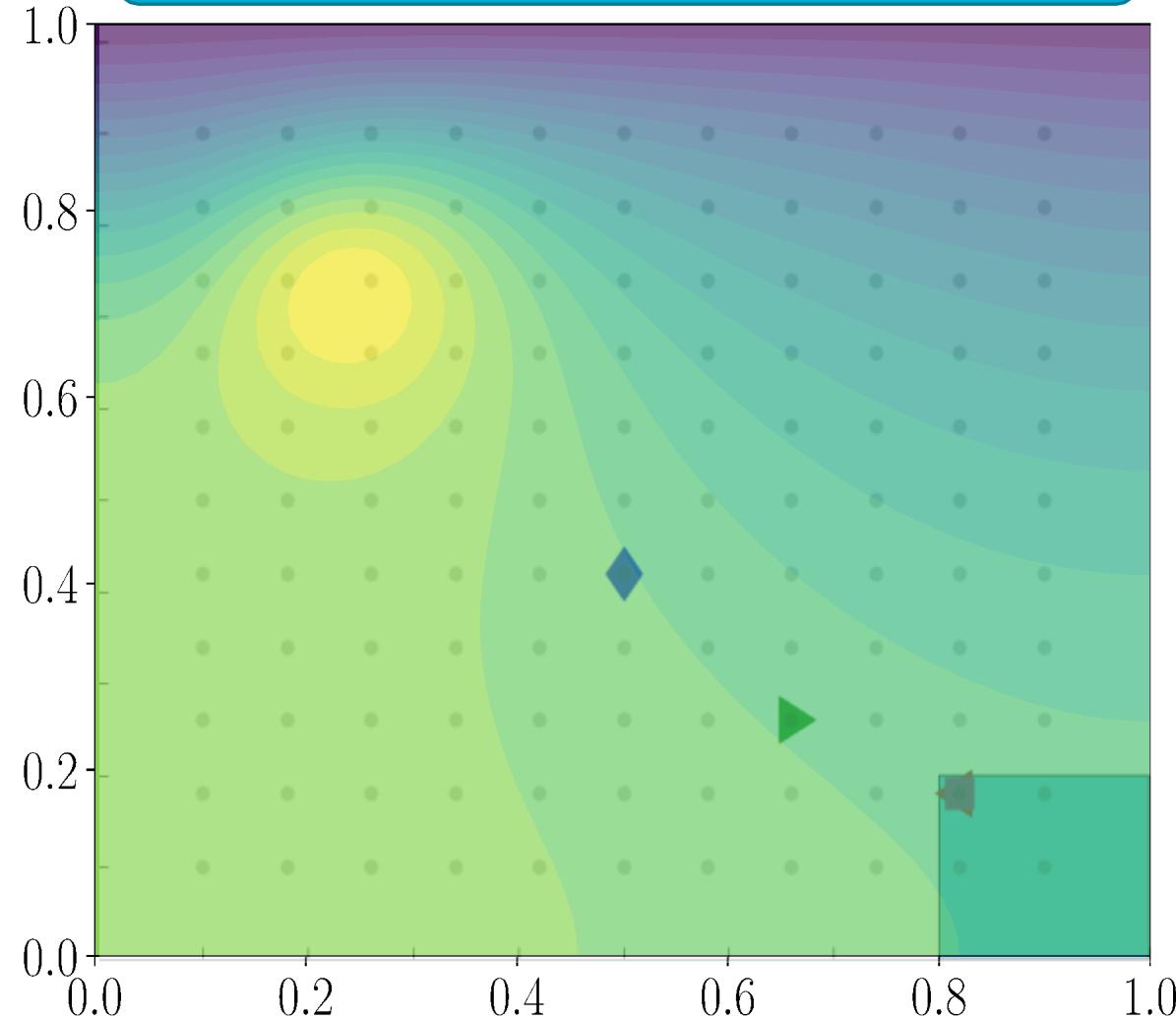


Why are goal-oriented approaches beneficial?

OED for inverse problems



OED for prediction



Experimental design for optimal control problems

What if our goal is to **minimize uncertainty** related to an **optimal control** policy?

analytical expressions
for the **objective**
function

- Gaussian prior
- Linear parameter-to-observable map
- Quadratic control objective

Deriving the OED for control objective function

Solution to the OED problem

$$\xi^* = \min_{\xi} U(\xi)$$

Goal: derive $U(\xi)$ for control problems

1. Define parameter-to-observable map

2. Determine objective function for the inverse problem

3. Determine objective function for the control problem

How to collect data to minimize **uncertainty** in a control objective

1. Define parameter-to-observable map

 Γ_{\parallel} Γ_{\perp}

$$-\kappa \Delta u(x, y) = z(x, y) \text{ in } \Omega$$

$$u(x, y) = 0 \text{ on } \Gamma_D$$

$$-\kappa \nabla u(x, y) \cdot \mathbf{n} = p(x) \text{ on } \Gamma_N$$

 Γ_{\parallel}

Steady state-advection diffusion

 Γ_{\perp}

Design – spatial locations for data collection

1. Define parameter-to-observable map

 $\Gamma_{\|}$

$$-\kappa \Delta u(x, y) = z(x, y) \text{ in } \Omega$$

$$u(x, y) = 0 \text{ on } \Gamma_D$$

$$-\kappa \nabla u(x, y) \cdot \mathbf{n} = p(x) \text{ on } \Gamma_N$$

 $\Gamma_{\|}$ $\Gamma_{\|}$

Steady state-advection diffusion

Control

1. Define parameter-to-observable map

$$\begin{aligned} -\kappa \Delta u(x, y) &= z(x, y) \text{ in } \Omega \\ u(x, y) &= 0 \text{ on } \Gamma_D \\ -\kappa \nabla u(x, y) \cdot \mathbf{n} &= p(x) \text{ on } \Gamma_N \end{aligned}$$

Steady state-advection diffusion

Unknown parameter

Assumption – discrete

$$p(x) = \sum_{i=1}^{n_p} p_i \phi_i(x)$$

1. Define parameter-to-observable map

$$\begin{aligned}
 -\kappa \Delta u(x, y) &= z(x, y) \text{ in } \Omega \\
 u(x, y) &= 0 \text{ on } \Gamma_D \\
 -\kappa \nabla u(x, y) \cdot \mathbf{n} &= p(x) \text{ on } \Gamma_N
 \end{aligned}$$

Γ_D Γ_N

Discretized PDE

$$|| = || + || + ||$$

Parameter-to-observable map

$$|| = || + || + || + ||$$

Linear in parameter and control

2. OED objective function – inverse problem

Experimental design goal: minimize uncertainty parameter estimates

OED objective function

$$U(\xi) = \text{trace}(\Gamma_{\text{post}}(\xi))$$

Only posterior mean
depends on data

$$\Gamma_{\text{post}} = (F_2^T \Gamma_{\text{noise}}^{-1} F_2 + \Gamma_{\text{pr}}^{-1})^{-1}$$

and
control

$$\mathbf{m}_{\text{post}} = \Gamma_{\text{post}} \left(F_2^T \Gamma_{\text{noise}}^{-1} \mathbf{y} + \Gamma_{\text{pr}}^{-1} \mathbf{m}_{\text{pr}} - F_2^T \Gamma_{\text{noise}}^{-1} (F_1 \mathbf{z} + \boldsymbol{\beta}) \right)$$

3. Determine objective function for control problem

- I. Define the **optimal control** problem and objective
- II. Compute the **variance** of the control objective
- III. Derive the **objective function**

3.1 Define the optimal control problem and objective

Control objective

$$\phi(\mathbf{z}) = \frac{1}{2} \int_{\Omega} (u - \bar{u})^2 dx dy$$

Target concentration

Optimal control problem

$$\mathbf{z}(x, y) = \sum_{k=1}^{n_z} z_k \xi_k(x, y)$$

$$\mathbf{z}^* = \min_{\mathbf{z}} \frac{1}{2} \int_{\Omega} (u - \bar{u})^2 dx dy + \frac{\alpha}{2} \|\mathbf{z}\|_2^2$$

Optimal control Solution

$$\mathbf{z}^*(\mathbf{p}) = \mathbf{F}_3 \mathbf{p} + \boldsymbol{\beta}_2$$

Discretized objective

$$\phi^N(\mathbf{z}^*) = \frac{1}{2} \langle \mathbf{F}\mathbf{p} + \mathbf{c}, \mathbf{Q}(\mathbf{F}\mathbf{p} + \mathbf{c}) \rangle$$

Quadratic in parameter

3.II Compute the variance of the control objective

Since $\mathbf{p} \sim \mathcal{N}(\mathbf{m}_{\text{post}}, \boldsymbol{\Gamma}_{\text{post}})$ we can analytically compute variance[‡]

$$\begin{aligned}\psi(\mathbf{y}) &:= \text{Var} \left[\frac{1}{2} \langle \mathbf{F}\mathbf{p} + \mathbf{c}, \mathbf{Q}(\mathbf{F}\mathbf{p} + \mathbf{c}) \rangle \right] \\ &= \frac{1}{2} \text{tr} \left[(\widehat{\mathbf{A}}\boldsymbol{\Gamma}_{\text{post}})^2 \right] + \langle \widehat{\mathbf{A}}\mathbf{m}_{\text{post}} + \widehat{\mathbf{b}}, \boldsymbol{\Gamma}_{\text{post}} (\widehat{\mathbf{A}}\mathbf{m}_{\text{post}} + \widehat{\mathbf{b}}) \rangle\end{aligned}$$

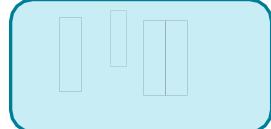
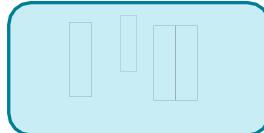
[‡] https://aalexan3.math.ncsu.edu/articles/moments_quad.pdf

3.II Compute the variance of the control objective

Since $\mathbf{p} \sim \mathcal{N}(\mathbf{m}_{\text{post}}, \boldsymbol{\Gamma}_{\text{post}})$ we can analytically compute variance[‡]

$$\psi(\mathbf{y}) := \text{Var} \left[\frac{1}{2} \langle \mathbf{F}\mathbf{p} + \mathbf{c}, \mathbf{Q}(\mathbf{F}\mathbf{p} + \mathbf{c}) \rangle \right]$$

$$= \frac{1}{2} \text{tr} \left[(\widehat{\mathbf{A}} \boldsymbol{\Gamma}_{\text{post}})^2 \right] + \langle \widehat{\mathbf{A}} \mathbf{m}_{\text{post}} + \widehat{\mathbf{b}}, \boldsymbol{\Gamma}_{\text{post}} (\widehat{\mathbf{A}} \mathbf{m}_{\text{post}} + \widehat{\mathbf{b}}) \rangle$$



[‡] https://aalexan3.math.ncsu.edu/articles/moments_quad.pdf

3.II Compute the variance of the control objective

Since $\mathbf{p} \sim \mathcal{N}(\mathbf{m}_{\text{post}}, \boldsymbol{\Gamma}_{\text{post}})$ we can analytically compute variance[†]

$$\psi(\mathbf{y}) = \frac{1}{2} \text{tr} \left[(\widehat{\mathbf{A}} \boldsymbol{\Gamma}_{\text{post}})^2 \right] + \langle \widehat{\mathbf{A}} \mathbf{m}_{\text{post}} + \widehat{\mathbf{b}}, \boldsymbol{\Gamma}_{\text{post}} (\widehat{\mathbf{A}} \mathbf{m}_{\text{post}} + \widehat{\mathbf{b}}) \rangle$$

$$\mathbf{m}_{\text{post}} = \boldsymbol{\Gamma}_{\text{post}} \left(\mathbf{F}_2^T \boldsymbol{\Gamma}_{\text{noise}}^{-1} \mathbf{y} + \boldsymbol{\Gamma}_{\text{pr}}^{-1} \mathbf{m}_{\text{pr}} - \mathbf{F}_2^T \boldsymbol{\Gamma}_{\text{noise}}^{-1} (\mathbf{F}_1 \mathbf{z} + \boldsymbol{\beta}) \right)$$

depends upon the **data** and **control**

3.II Compute the variance of the control objective

Since $\mathbf{p} \sim \mathcal{N}(\mathbf{m}_{\text{post}}, \boldsymbol{\Gamma}_{\text{post}})$ we can analytically compute variance[†]

$$\psi(\mathbf{y}) = \frac{1}{2} \text{tr} \left[(\widehat{\mathbf{A}} \boldsymbol{\Gamma}_{\text{post}})^2 \right] + \langle \widehat{\mathbf{A}} \mathbf{m}_{\text{post}} + \widehat{\mathbf{b}}, \boldsymbol{\Gamma}_{\text{post}} (\widehat{\mathbf{A}} \mathbf{m}_{\text{post}} + \widehat{\mathbf{b}}) \rangle$$

$$\mathbf{m}_{\text{post}} = \boldsymbol{\Gamma}_{\text{post}} \left(\mathbf{F}_2^T \boldsymbol{\Gamma}_{\text{noise}}^{-1} \mathbf{y} + \boldsymbol{\Gamma}_{\text{pr}}^{-1} \mathbf{m}_{\text{pr}} - \mathbf{F}_2^T \boldsymbol{\Gamma}_{\text{noise}}^{-1} (\mathbf{F}_1 \mathbf{z} + \boldsymbol{\beta}) \right)$$

Nominal control

$$\mathbf{z}^*(\mathbf{m}_{\text{pr}}) = \mathbf{F}_3 \mathbf{m}_{\text{pr}} + \boldsymbol{\beta}_2$$

3.III Derive the objective function

OED for control objective function

$$U(\xi) = E_p E_y [\psi(y, \theta)]$$

$$= E_p E_y \left[\frac{1}{2} \text{tr} \left[(\widehat{\mathbf{A}} \Gamma_{\text{post}})^2 \right] + \langle \widehat{\mathbf{A}} \mathbf{m}_{\text{post}} + \widehat{\mathbf{b}}, \Gamma_{\text{post}} (\widehat{\mathbf{A}} \mathbf{m}_{\text{post}} + \widehat{\mathbf{b}}) \rangle \right]$$

Design experiments that maximize **information** regarding how well an **optimal control** policy **performs**

Deriving OED for control objective function

- Define parameter-to-observable map
- Derive Bayesian inverse problem solution
- Write OED for inverse problem objective function
- Derive optimal control problem solution
- Define OED in the context of control problem
 - Compute posterior variance
 - Define objective function

Experimental design goal: determine optimal spatial locations to collect data which minimizes uncertainty in parameter estimates

Goal

$$\xi^* = \min_{\xi} U(\xi)$$

OED objective function

$$U(\xi) = \text{trace}(\Gamma_{\text{post}}(\xi))$$

Minimizing the average uncertainty in model parameters – p

2. OED objective function – inverse problem

Assumptions

$$\|\mathbf{z} - \mathbf{F}_1 \mathbf{m}_{\text{pr}}\| \sim (\text{pr}, \|\mathbf{z} - \mathbf{F}_1 \mathbf{m}_{\text{pr}}\|)$$

$$\|\mathbf{y} - \mathbf{F}_2 \mathbf{m}_{\text{pr}}\| \sim (\text{noise}, \|\mathbf{y} - \mathbf{F}_2 \mathbf{m}_{\text{pr}}\|)$$

Bayesian inverse problem solution

Does not depend upon
 \mathbf{y}

$$\boldsymbol{\Gamma}_{\text{post}} = (\mathbf{F}_2^T \boldsymbol{\Gamma}_{\text{noise}}^{-1} \mathbf{F}_2 + \boldsymbol{\Gamma}_{\text{pr}}^{-1})^{-1}$$

$$\mathbf{m}_{\text{post}} = \boldsymbol{\Gamma}_{\text{post}} (\mathbf{F}_2^T \boldsymbol{\Gamma}_{\text{noise}}^{-1} \mathbf{y} + \boldsymbol{\Gamma}_{\text{pr}}^{-1} \mathbf{m}_{\text{pr}} - \mathbf{F}_2^T \boldsymbol{\Gamma}_{\text{noise}}^{-1} (\mathbf{F}_1 \mathbf{z} + \boldsymbol{\beta}))$$

Uncertainty in model parameter estimates is characterized by the covariance

Optimal control problem solution

Assumption

$$z(x, y) = \sum_{k=1}^{n_z} z_k \xi_k(x, y)$$

Goal

$$\min_{\mathbf{z}} \frac{1}{2} \int_{\Omega} (u - \bar{u})^2 dx dy + \frac{\alpha}{2} \|\mathbf{z}\|_2^2$$

target temperature

optimal control
can be written as
an affine function
in \mathbf{p}

Optimal control Solution

$$\mathbf{z}^*(\mathbf{p}) = F_3 \mathbf{p} + \beta_2$$

Experimental design goal: determine optimal spatial locations to collect data which minimizes the variance (uncertainty) in the control objective at the optimal control

$$\phi(\mathbf{z}) = \frac{1}{2} \int_{\Omega} (u - \bar{u})^2 dx dy$$

Discretize and evaluate at optimal control

$$\phi^N(\mathbf{z}^*) := \phi(\mathbf{p}) = \frac{1}{2} \langle \mathbf{F}\mathbf{p} + \mathbf{c}, \mathbf{Q}(\mathbf{F}\mathbf{p} + \mathbf{c}) \rangle$$

Quadratic in \mathbf{p}