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s | Why are goal-oriented approaches beneficial?

Stationary advection-diffusion example
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Why are goal-oriented approaches beneficial?




7 | Experimental design for optimal control problems

KGaussian prior \

= Linear parameter-to
—_— -observable map
= Quadratic control
Kobjective /




s | Deriving the OED for control objective function

Solution to the OED problem
£ = minU($)
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uncertainty in a control

objective
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s |11. Define parameter-to-observable map
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s |11. Define parameter-to-observable map
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1. Define parameter-to-observable map
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10 | 2. 0ED objective function - inverse problem

OED objective function 4 R
Only posterior mean
U) = trace(rpost(f)) depends on data
NS J
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{FPOSt - (F 2lnoisef2 + rpl') J [control}
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1" ‘ 3. Determine objective function for control problem m
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12 | 3.1 Define the optimal control problem and objective m
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{ Since p ~ NV (mpost, Ipost) We can analytically compute variance*

1
$() = Var |5 (Fp + ¢, Q(Fp + )]

|
3 I 3.1 Compute the variance of the control objective m
1 ~
— Etr [(Arpost) ] (Ampost + b rpost (Ampost + b)
|

I https://aalexan3.math.ncsu.edu/articles/moments_quad.pdf



{ Since p ~ V' (mpost, Ipost) We can analytically compute variance? J
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$() = Var |>(Fp + ¢, Q(Fp + ©))

— . ~ - ~
=20 [(Arpost)z] + (Ampost + b, Tpost (Ampost + b))

| |
(00 ] 0]

I https://aalexan3.math.ncsu.edu/articles/moments_quad.pdf

13 | 3.1l Compute the variance of the control objective Eﬂi
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{ Since p ~ NV (mpost, Ipost) We can analytically compute variance*

Y(y) = !(Arpost) ] (Ampost + b, Tpost (Ampost + b))

mpost = Tpost (FTFI;élsey + Tppmpr — FiT b (Fyz + ﬁ))
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3 | 3.1l Compute the variance of the control objective m
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{ Since p ~ NV (mpost, Ipost) We can analytically compute variance*

Y(y) = !(Arpost) ] (Ampost + b, Tpost (Ampost + b))

Mpost = Ipost (FTF_llgeJ’ + Ipr mpr FTFﬁélse(Flz + ﬁ))
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3 | 3.1l Compute the variance of the control objective m
Nominal control l
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OED for control
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Deriving
OED for

control
objective
function

Define parameter-to-observable map

Derive Bayesian inverse problem solution

Write OED for inverse problem objective function
Derive optimal control problem solution

Define OED in the context of control problem
= Compute posterior variance

= Define objective function




> 1 OED for the inverse problem

Experimental design goal: determine optimal spatial locations to
collect data which minimizes uncertainty in parameter estimates

Goal

£ = minU(§)
OED objective function

U(¢) = trace(Tpost($))

[

Minimizing the average
uncertainty in model
parameters - p
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Assumptions

~ ( pr pr) ~ ( ) noise)
Bayesian inverse problem solution R
Does not depend upon
y
Tp—1 -1\~1
{rpost (F2TnoiseFz + Tpr) J -
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2. 0ED objective function - inverse problem m
Mpost = Ipost (FTF oiseyY T I‘pr'mpr FTrﬁcl,lse(Fﬂ +ﬁ)) l
|

Uncertainty in model parameter estimates is
characterized by the covariance
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24 | Optimal control problem solution m

Assumption 4 Goal N
nz
2060)= Y zebi(xy) min [ @ - @2dxdy + 32l
e=1 o
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- ) g Optimal control Solution B
optimal control
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an affine function z"(p) = F3p + B-
inp \_ J |

& v




Experimental design goal: determine optimal spatial locations to
collect data which minimizes the variance (uncertainty) in the
control objective at the optimal control

1
b(2) =~ L (u — @)2dxdy

Discretize and evaluate at optimal control

1
¢"(z*) = p(p) = 5 {Fp+¢,Q(Fp +©))

s 1 OED for control problem Eﬂi
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[ Quadratic in p ]




