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Dynamic compression experiment analysis using XRD: understanding
the behavior of materials in extreme environments.

Thor and Z are pulsed-power accelerators which can drive shockless
ramp waves to pressures of 10s and 100s of GPa, respectively.

Z.-machine at Sandia National Labs
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33 m in diameter, 3 stories tall

22 M]J stored energy
25 MA peak current
100-600 ns rise time

X-ray diffraction geometry
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X-ray diffraction is key to deciphering the
dynamic mechanisms and kinetics of phase
transformation, because it gives
atomistic detail, structure &
orientation.



; 1 Dynamic compression experiment analysis using XRD: challenges

associated with in-situ XRD

Top view Side view

Angle #1

Analyzing XRD data is not trivial for many reasons:

* X-ray source can present collimation and has relatively
broad spectra.

* The data obtained is sparse (one shot from Thor/Z
generates one pattern).

* Noise is present in the obtained patterns from various

sources (e.g., window, tamper, machine produced, etc.) .
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Data-driven paradigm shift: optimizing interpretation of experimental

XRD data.
D20121702 - Thor-XRD shot 154,
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—r— 77T T T

Intensity (3.0.0

1) Orientation and lattice
identification.

2) Denotsing of
Experimental Data.




5 1| Simulated XRD: using LAMMPS to obtain realistic XRD patterns.
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Constructing the Reciprocal space lattice in LAMMPS
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s 1| Data-Driven Analysis |: Determining the Crystal Lattice and Orientation
Angle using Deep Learning (DL).
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;1 Data-Driven Analysis I: Incorporating Physics into the DL-based model.
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Data-Driven Analysis I: Results and next steps.

0.0055 1

0.0050 1

0.0045 1

0.0040 -

Probability Density

0.0035 1

0.0030 1

True Values Angle 1 Training Set
Predicted Values Angle 1 Training Set

Predicted Values

175

150

125

100

75

50

25

175

True Values

25 50 75 100 125 150
Angle (Degrees)
@ Training Set
@ Testing Set
0 25 50 75 100 125 150 175

ity

ty Dens

1

Probabil

0.00604

0.0055+4

0.0050+4

0.0045 -

0.0040 -

0.0035

0.0030+

=== True Values Angle 1 Testing Set
—— Predicted Values Angle 1 Testing Set

0 25

50 75 100 125
Angle (Degrees)

T

150

Test Set consists of
300 XRD patterns
generated from angles
between 0 and 360 on
which the model has

not been trained.

* Successful training of a single-angle ML tool is proof of concept, moving to

two and four angle models present scaling challenges.

* Automate symmetry identification to reduce the data necessary.

* Using uncertainty as a our objective we can train an adaptive model that in
an automatic way samples the regions of the input domain needed to

establish a robust model with an optimal resolution.
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Data-Driven Analysis ll: Removing experimental noise using Deep

Learning.
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Data-Driven Analysis ll: DL-based de-noising protocol. |
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11 | Conclusions: ML-enhanced interpretation of XRD patterns from
dynamic compression experiments.

ML and computational data-driven techniques enable the |
development of robust tools to enhance and better interpret
dynamic X-ray diffraction data produced from Sandia’s Pulsed Powe
Platforms (Thor and Z). ]

The developed tools will dramatically improve our atomic-scale
understanding and predictive capability of phase transition behavior.

Opens new research avenues by enabling new state-of-the-art
experiments to probe phase transitions, microstructural evolution,
and transformation mechanisms.
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Questions?




Simulations comparable to Experiments

Ambient 180 rotation of CdS with a
Molybdenum 17.6 keV k-a line source
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12 | Data created
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Crystallography of solids & x-ray diffraction principles

Face centered cubic (fcc)

Hexagonal close-packed (hcp)

Beam of x-rays strikes a crystal & scatters
From angles and intensities of diffracted beams, 3-dimensional picture of the

crystal is obtained

dsing

Bragg’s Law:

Coherent reflections will occur
for wavelength and crystal d-

spacings that satisfy the
condition:
nA = 2dsin0

The scattering angle (half-
angle of the Debye-Scherrer
cone) is:

¢ =20

Laue Spots:

llluminate a single crystal
sample with a continuum x-
ray beam, discrete reflections
called Laue spots are
observed.

Debye-Scherrer
Cones:

llluminate a polycrystalline
sample with a
monochromatic x-ray
beam, scattering patterns
called Debye-Scherrer
cones are observed.
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Network is able to learn
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Convolution 1

Max Pool
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