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Introduction
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! Polyurea is an extremely tough polymer used commercially to
increase durability, corrosion, or impact resistance of surfaces.
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a ticle Synthesis

Explore nanoparticle synthesis to obtain control of nanoparticle size and facilitate dispersion into polymer
phase. Nanoparticle-sized ceria can be created in large batch sizes using polyvinylpyrrolid (PVP)-
technique. PVP polymer remains on particle surface after synthesis and drying.
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1) Dissolve polyvinylpyrrolidone,
cerium nitrate, and urea into water

2) Heat solution to 65 °C 3) Precipitate colloidal cerium-based

particles using ammonium hydroxide
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Particle size can be controlled by changing
reagent concentration
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Primary particle size of large batch
material is near 10 nm

X-ray diffraction verifies CeO,
synthesis

Explore ticle surface rr using a poly surfactant to increase compatibility with polymer
phase and facilitate particle dispersion. PVP-coated ceria is optimal.
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best compatibility with polyurea precursors, as measured

through viscosity of the particle-filled suspension Poor particle-polymer compatibility results in degraded

composite toughness and maximum tensile strain when
tested in tension
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Polyurea Dynamics

The strain and strain-rate dependence of the modulus of polyurea is important to characterize for design of
energy damping encapsulants and barriers.

As the soft domain molecular weight is decreased from P1000 to P650
to P250, the modulus and glass transition temperature (Tg) increase.
Viscoelasticity and energy damping are maximized near Tg where the
storage and loss shear moduli are both significant.
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Shock tube imposes a mach 2.5 blast of
air on a 4x4 inch, | mm thick plate of
aluminum, covered with a .5 mm thick
polyurea sample and deflection is
measured using DIC.

The bare aluminum plate deflects the most,
whereas polyurea composites damp the
< impact.

The ability for polyureas to damp mechanical energy are promising.
By surface modifying particles with PVP. polyurea nanocomposites
can be made. Nanocomp can be Ided or cured into any
shape and perform well in damping mechanical energies.

Unknown are mechanical properties under extremely high strain
rates (> 107 1/s) and nanostructural behavior with different
nanoparticle loadings. To answer these questions, polyurea samples
will be tested in the Sandia National Laboratory SPHINX and Z-
machine under electron beam and X-ray radiation pulses,
respectively.
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