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Building a new generation of multiscale materials models with machine-learned interatomic potentials

Excellent physical models exist to simulate material behavior at specific length and time scales. However, many 

challenges still remain in linking materials behavior across scales. Applying the techniques of machine learning to the 

issue of multiscale simulation has led to a revolution in atomistic materials modeling. Machine-learned interatomic 

potentials (MLIAPs) connect extremely accurate but computationally expensive quantum modeling techniques with lower 

fidelity but fast classical molecular dynamics (MD) models. In other words, MLIAPs allow MD simulations to achieve 

quantum accuracy at unprecedented system sizes and time scales. The diversity of model forms and feature sets for 

MLIAPs, paired with popular MD codes such as LAMMPS, has also opened new pathways to accelerating MLIAP 

development. These developments have enabled significant progress to be made in challenging scientific and engineering 

areas, including modeling conditions inside future fusion reactors, understanding magnetic materials in extreme 

environments, and accelerated exploration of complex alloy systems.

Though MLIAPs represent a new paradigm in the atomistic modeling community, the traditional problems in ML/DL 

regarding retaining accuracy while extrapolating remain. This talk will overview our group’s strategies to address these 

issues using the open-source and user-friendly FitSNAP MLIAP generation code. We will explore how current 

implementations of active learning, uncertainty quantification, and automated training set generation are systematically 

improving MLIAP simulation accuracy and extrapolative capabilities. 
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Physical models of materials are often constrained to limited 
length- and time-scale regimes. 
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Accuracy/computational speed tradeoff in 
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(also numerical 
error 
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Atomistic Molecular Dynamics

Electronic Structure

• Input: ion (atom) positions
• Output: electronic structure, 

energy, forces, stress
• Immense predictive power
• Expensive
• O(N^3) scaling
• N ~ 100

Quantum Molecular Dynamics
• Input: atom positions, 

interatomic potential
• Output: energy, forces, 

stress
• O(N) scaling
• N ~ millions, billions
• Accuracy is a problem

Classical Molecular Dynamics

“SNAP: Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials”  Thompson et al. J.Comp.Phys. 
2015.  

Machine-Learned Interatomic Potential (MLIAP)

Energyi = U(features)
Ground truth Reduced order model

Machine learning is being used to successfully bridge quantum
- and atomic-scale modeling and simulation. 



SNAP models are one means of developing MLIAPs for a 
variety of materials.
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Hyperparameter
Optimization

(SOGA Genetic 
Algorithm)

https://github.com/FitSNAP/FitSNAP

energies 
forces
stress tensors



The underlying SNAP model form can be varied for different 
target applications and desired accuracy.

https://github.com/FitSNAP/FitSNAP
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Regression Method
β vector fully describes a SNAP potential

Decouples MD speed from training set size

Model Form

DFT Training

Set of DescriptorsWeights

Regularization
Penalty

Linear SNAP
(weighted density, baseline)

Quadratic SNAP



The underlying SNAP model form can be varied for different 
target applications and desired accuracy.

https://github.com/FitSNAP/FitSNAP

Sensitivity to Chemical Change
Antisite versus Bulk Zincblende 

Increases computational speed 
of ChemSNAP with some 

accuracy tradeoff

ChemSNAP

ChEmbed SNAP

EME

WD

D



MLIAPs in general, and SNAP specifically, allow MD simulations to achieve 
quantum accuracy at unprecedented system sizes and time scales.

8



-

-

2022

-

-

Applications of SNAP models (SNAPplications!)

https://github.com/FitSNAP/FitSNAP
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System
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WBeHe

Actinides

NiMo

LiN

Various

InP

NbMoTaW

2014

Year

2015

2017

2018

2018

2019

2020

2020

2021

Dislocation motion

Usage

Radiation damage, defects

Plasma facing materials

Shock, phase transitions

Phase diagram prediction

Super-Ionic Conductor

Accuracy/Cost comparison

Radiation damage, defects

HEA alloy mechanics

31

NDoF

31

56

56

31

31

10-130

241

124

363

NTraining

665

25,052

20,000

2,000

3,000

1,000

1,000

~3,00

Linear

Descriptors

Linear

Linear

Quadratic

Linear

Lin+Charge

Lin, Quad

EME

Linear

Mo 2017 Phase diagram prediction31 1000 Linear

AlNbTi 2020 High entropy alloy design 1596 7,250 Quadratic

Si 2020 Neural network SNAP 1596 >5,000 NN

MoNbTaTi HEA alloy design - >5,000

GeSe Vitrification - >5,000
EME

W Model form selection - 330,000 NN

LiMoS Li-ion batteries - >5,000 -

SiGeSnPb Thermoelectric materials - >5,000
-
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Applications of SNAP models (SNAPplications!)

https://github.com/FitSNAP/FitSNAP

System Year Usage NDoF NTraining Descriptors

A 2021 Predicting electron density91 30 NN

WBeHN

C

C, V

Plasma facing materials

Planetary impacts, shock

Metal plasmas

56*

1596

1596

>40,000

30,000

10,000

Linear

Quadratic

Quadratic

MoNbTaTi HEA alloy design - >5,000
EME

GeSe Vitrification - >5,000
EME

W Model form selection - 330,000 NN

LiMoS Li-ion batteries - >5,000 -

SiGeSnPb Thermoelectric materials - >5,000
-

WZrC Plasma facing materials 56* >40,000 Linear

Fe 2021 Magnetic phase transition1596 683 Quad+Spin



Developing and curating MLIAP training sets is one of the 
field’s biggest challenges.

https://github.com/FitSNAP/FitSNAP

Normal crystal Interfaces Liquids

W Zr C

Physics-informed training Up to now:
Curated training sets created 
by hand, using physical 
intuition

Works very well with 
targeted materials systems

Loses transferability, not 
easy to automate, need an 
expert



To improve extrapolative capability, ‘iterative learning’ with 
humans-in-the-loop has been used with success.

https://github.com/FitSNAP/FitSNAP

USPEX : A. Oganov et al. / J. Chem. Phys. 124, 244704 (2006) 

Hands-on
Route: Run MD

Carve out structures

Run DFT

Automated
(kind of):

Structure 
prediction from 

DFT

Re-Train ML-IAP

Structure 
prediction from 

ML-IAP

Run DFT



Automating training set creation and curation is crucial to 
developing more efficient and transferable MLIAPs.

https://github.com/FitSNAP/FitSNAP

Normal crystal Interfaces Liquids

W Zr C

Physics-informedUp to now:
Curated training sets 
created by hand, using 
physical intuition

Works very well with 
targeted materials systems

Loses transferability, not 
easy to automate, need an 
expert

Karabin and Perez, JCP 153, 094110 (2020)

No expert needed, shown to be 
transferable, what is needed created 
‘on the fly’

Not easily interpretable, groundwork 
still being laid, handshaking between 
software (LAMMPS, FitSNAP, UQ)

(de Oca Zapiain, Pereyra, Lubbers, Perez, Thompson)arXiv:2201.09829v2 

New techiques in development:
Information entropy maximization (right & bottom), active 

learning using uncertainty quantification (next slides)

https://arxiv.org/abs/2201.09829v2


Active learning paired with uncertainty quantification can 
vastly improve the efficiency of training accurate MLIAPs.

https://github.com/FitSNAP/FitSNAP

Pool-based, uncertainty-informed 
active learning paradigm Structures with high predictive 

uncertainty added here provide a 
large improvement in accuracy

Representative structure 
added (at ~50 data 
points) with large 

uncertainty

Williams, Sargsyan, Najm, SNL



Active learning is being formally incorporated into the MLIAP 
development workflow.

https://github.com/FitSNAP/FitSNAP

• Extend current AL loop to span MD predictions – goal oriented AL
• Major challenge is that the extensive computational costs of forward UQ in MD are now internal to the 

AL loop. A significant increase in AL costs.
• Use experimental data on MD observables to inform both data & model selection

     DFT 

Active
Learning

Model Selection
MD 

Inputs
  Experiments

    MD  QoIs Validation

FitSNAP

Williams, Sargsyan, Najm, SNL



Conclusion

https://github.com/FitSNAP/FitSNAP

New developments in the field of machine-learned interatomic potentials will allow 
scientists to build materials models with more accuracy and efficiency.

This in turn will enable scientists to explore materials behavior (new and old!) at the 
nanoscale with more trust in the results and with higher throughput. 


