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Abstract

Building a new generation of multiscale materials models with machine-learned interatomic potentials

Excellent physical models exist to simulate material behavior at specific length and time scales. However, many
challenges still remain in linking materials behavior across scales. Applying the techniques of machine learning to the
issue of multiscale simulation has led to a revolution in atomistic materials modeling. Machine-learned interatomic
potentials (MLIAPs) connect extremely accurate but computationally expensive quantum modeling techniques with lower
fidelity but fast classical molecular dynamics (MD) models. In other words, MLIAPs allow MD simulations to achieve
quantum accuracy at unprecedented system sizes and time scales. The diversity of model forms and feature sets for
MLIAPSs, paired with popular MD codes such as LAMMPS, has also opened new pathways to accelerating MLIAP
development. These developments have enabled significant progress to be made in challenging scientific and engineering
areas, including modeling conditions inside future fusion reactors, understanding magnetic materials in extreme

environments, and accelerated exploration of complex alloy systems.

Though MLIAPs represent a new paradigm in the atomistic modeling community, the traditional problems in ML/DL
regarding retaining accuracy while extrapolating remain. This talk will overview our group’s strategies to address these
issues using the open-source and user-friendly FitSNAP MLIAP generation code. We will explore how current
implementations of active learning, uncertainty quantification, and automated training set generation are systematically

improving MLIAP simulation accuracy and extrapolative capabilities.




Physical models of materials are often constrained to limited
length- and time-scale regimes.
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Machine learning is being used to successfully bridge quantum
- and atomic-scale modeling and simulation.
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SNAP models are one means of developing MLIAPs for a
variety of materials.
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The underlying SNAP model form can be varied for different
target applications and desired accuracy.
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The underlying SNAP model form can be varied for different
target applications and desired accuracy.
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MLIAPs in general, and SNAP specifically, allow MD simulations to achieve

quantum accuracy at unprecedented system sizes and time scales.

= Gordon Bell Prize Finalist, 2021

m  Team from USF, Sandia, NERSC, NVIDIA, KTH : doi.org/10.1145/3458817.3487400

= 2.6 billion atom diamond sample, 0.5x1.5 um
m  Shock wave in <110> direction initiated by piston, v, = 7 km/s.
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Applications of SNAP models (SNAPplications!)
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Applications of SNAP models (SNAPplications!)
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Developing and curating MLIAP training sets is one of the

field’s biggest challenges.
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To improve extrapolative capability, ‘iterative learning’ with
humans-in-the-loop has been used with success.
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Automating training set creation and curation is crucial to
developing more efficient and transferable MLIAPs. ML

Up to now:
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https://arxiv.org/abs/2201.09829v2

Active learning paired with uncertainty quantification can
vastly improve the efficiency of training accurate MLIAPs.

Pool-based, uncertainty-informed
active learning paradigm
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Active learning is being formally incorporated into the MLIAP
development workflow. %
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* Extend current AL loop to span MD predictions — goal oriented AL

* Major challenge is that the extensive computational costs of forward UQ in MD are now internal to the
AL loop. A significant increase in AL costs.

* Use experimental data on MD observables to inform both data & model selection



Conclusion

New developments in the field of machine-learned interatomic potentials will allow
scientists to build materials models with more accuracy and efficiency.

This in turn will enable scientists to explore materials behavior (new and old!) at the
nanoscale with more trust in the results and with higher throughput.
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