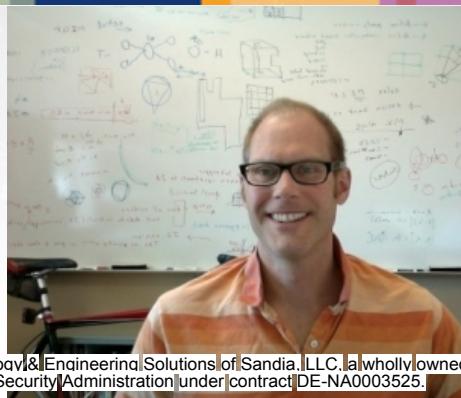


Deterministic Linear Time for Maximal Poisson-Disk Sampling using Chocks without Rejection or Approximation

SGP 6 July 2022

20 minutes

Scott A. Mitchell
sandia.gov/~samitch



Deterministic Linear Time for Maximal Poisson-Disk Sampling using Chocks without Rejection

What's new?

- Chock geometry

$$\text{Area } A(\phi) = (\tan \phi - \phi)/2$$

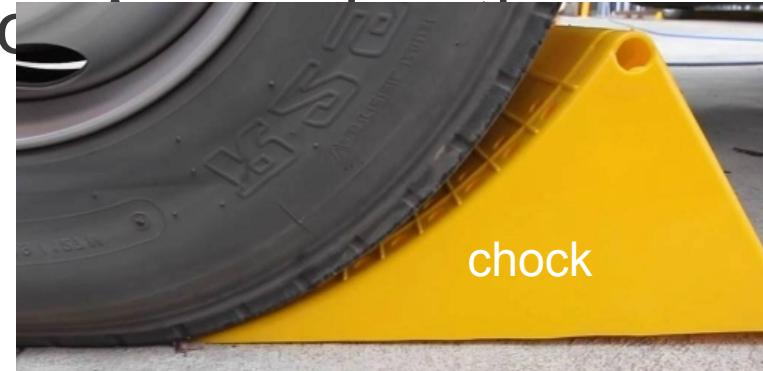
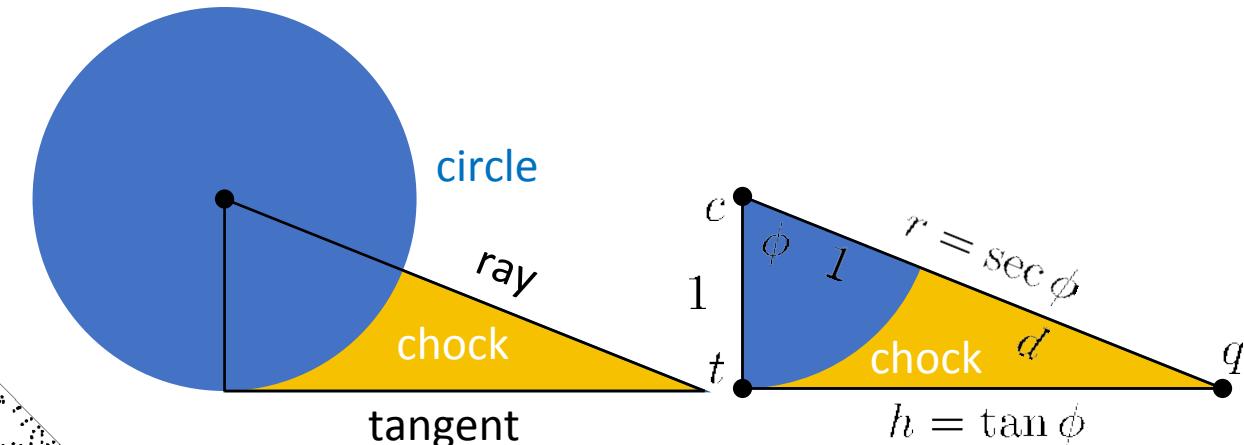
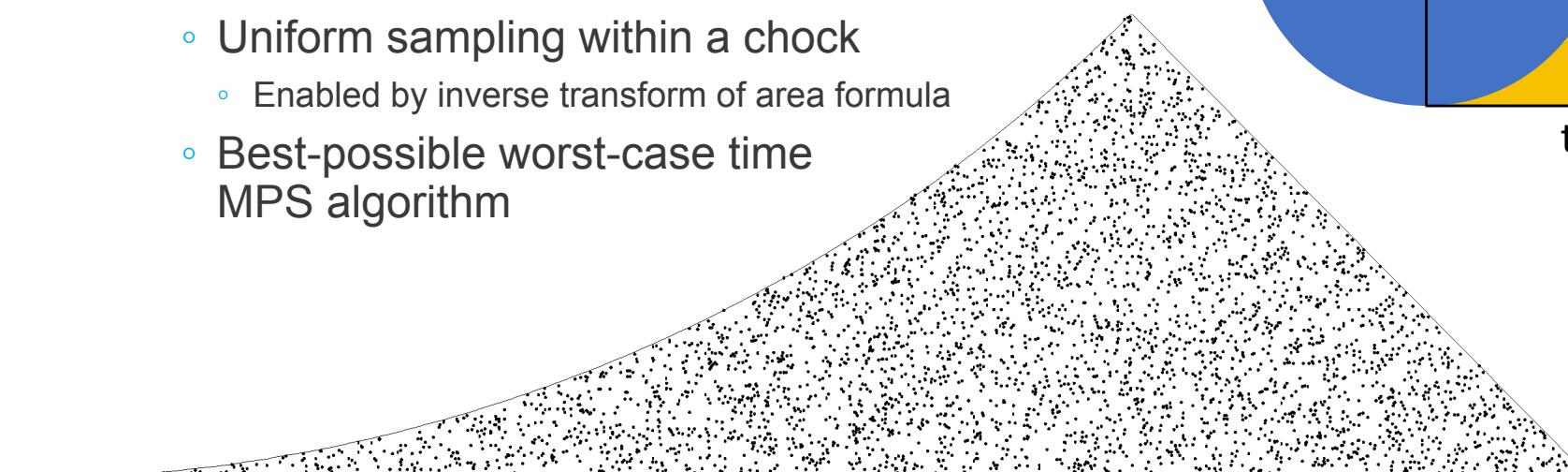
$$A^{-1}(uA) = 5 \text{ Newton's iterations}$$

$$\phi_0 = \sqrt[3]{6uA}$$

$$\phi_{i+1} = \phi_i - \frac{\tan \phi_i - \phi_i - 2uA}{\tan^2 \phi_i}$$

$$r_s = \sqrt{v \tan^2 \phi_s + 1}$$

- Uniform sampling within a chock
 - Enabled by inverse transform of area formula
- Best-possible worst-case time MPS algorithm



Poisson-disk Sampling \Rightarrow Dart Throwing Algorithm

time of arrival

order of arrival

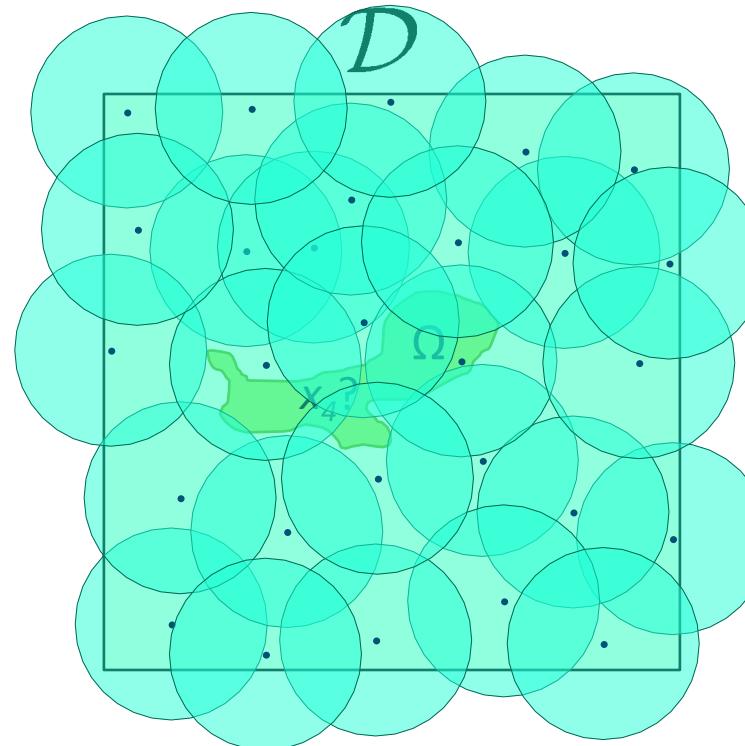
- Defined by process
- Insert random disks, build set X
- Disks don't contain another sample
- Poisson: points arrive at constant mean rate
 - Dart throwing equivalent output: unbiased order of arrival

Empty disk: $\forall x_i, x_j \in X, x_i \neq x_j : \|x_i - x_j\| \geq r$

$\forall \Omega \in \mathcal{D} :$
Poisson-process time: $PDF(t; \Omega) = \text{Area}(\Omega) e^{-t \text{Area}(\Omega)}$
Dart order of arrival: $P(x_i \in \Omega) = \text{Area}(\Omega) / \text{Area}(D)$

Maximal: $\forall x \in \mathcal{D}, \exists x_i \in X : \|x - x_i\| < r$

Poisson: points arrive at constant mean rate



Definition or Process?

Which would you rather have?

Definition of desired output

- Sorted order
 - So you can discover quicksort

Process to obtain it (e.g. algorithm)

- Bubblesort algorithm $O(n^2)$

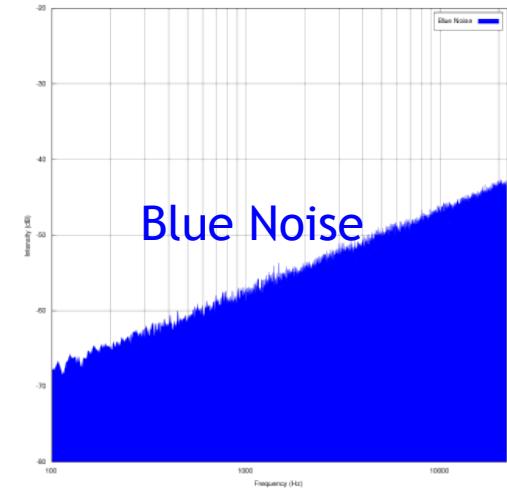
Another example:

- $Ax=b$
- Gaussian Elimination $O(n^3)$

Oscillating rings

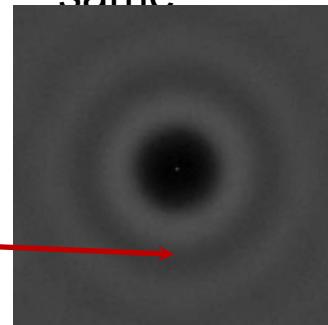
Blue-noise is a desired output
 Fourier transform of a distribution

- **Def.** power density increases 3.01 dB per octave (density proportional to f) over a finite frequency range.
- In computer graphics, "blue noise" is **loosely any noise** with minimal low frequency components and no concentrated spikes in energy. [Wikipedia]

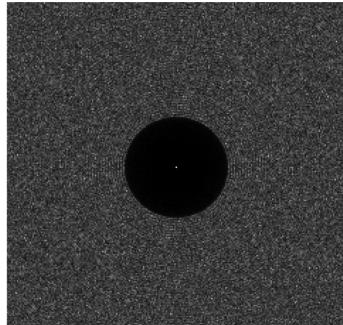


Poisson-disk Sampling is a process for generating a distribution

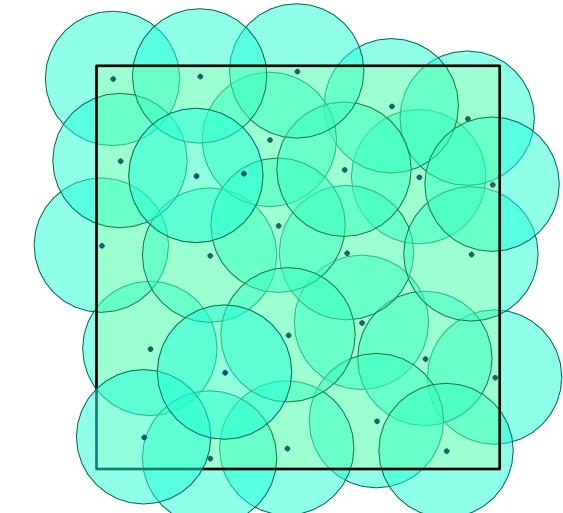
- Output resembles blue-noise, but is not same



Poisson-disk
 [DH06a]



Blue Noise
 [HSD13]



Poisson-disk Sampling vs. Blue Noise

Graphics community history

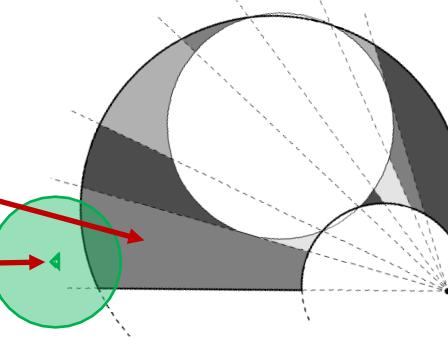
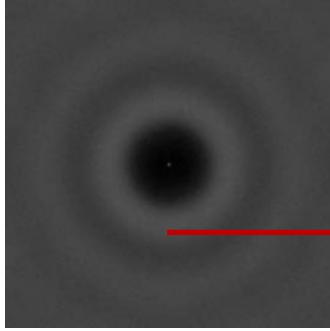
- Early claim that distribution of human retina receptors was Poisson-disk
- When looking at images (e.g. stippling), Blue-noise
 - Randomness avoids aliasing artifacts
 - Separation provides efficiency, no redundant samples
- Dart throwing process produces the same points as the Poisson-disk process
 - Simple algorithm
 - Output close-enough to blue-noise
 - **Not** saturation in finite runtime.
 - Fix: only generate samples from the uncovered subdomain

Scalloped Sectors

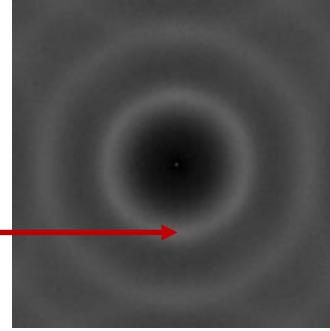
ScallopMDS, "Using Scalloped Sectors to Generate Poisson-disk Sampling Patterns" SIGGRAPH 2006.

Advancing front

- Next disk distance $[r, 2r]$ from a prior disk
- Never here,
so not Poisson-disk process



Poisson-disk



Scallop-disk
not Poisson-disk output

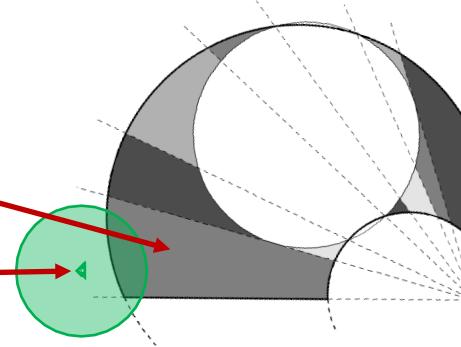
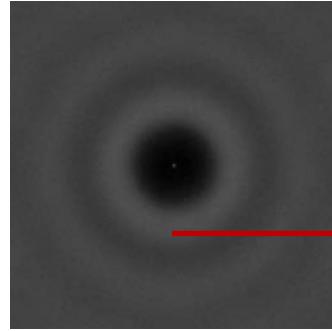
Brighter rings
Figures from their paper

Scalloped Sectors

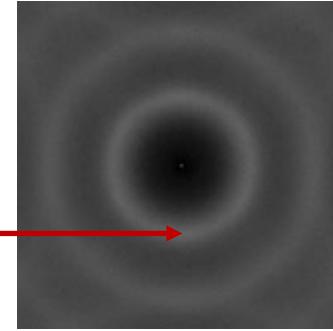
ScallopMDS, "Using Scalloped Sectors to Generate ~~Poisson~~-disk Sampling Patterns" SIGGRAPH 2006.

Advancing front

- Next disk distance $[r, 2r]$ from a prior disk
- Never here,
so not Poisson-disk process

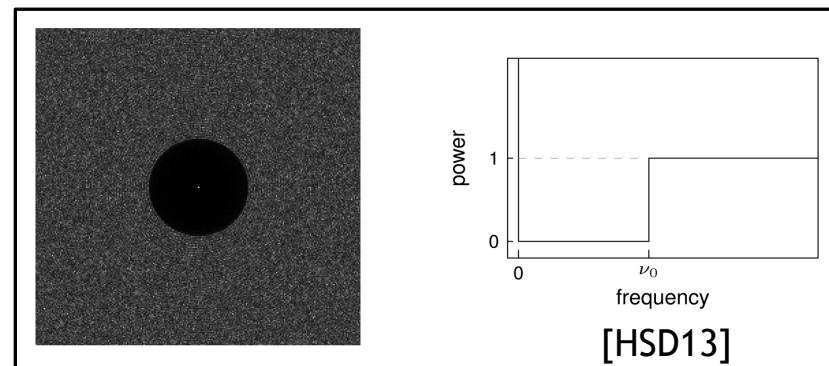


Poisson-disk



Scallop-disk
not Poisson-disk output

Brighter rings
Figures from their paper



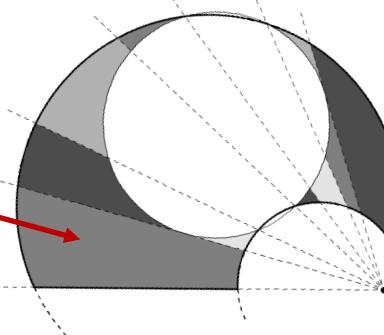
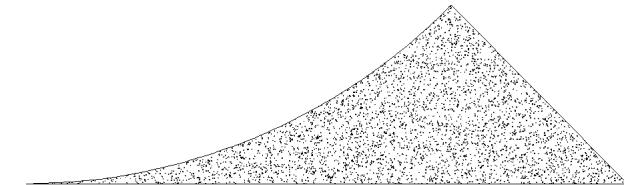
“Step Blue Noise” = real blue noise

Scalloped Sectors

ScallopMDS, "Using Scalloped Sectors to Generate Poisson-disk Sampling Patterns" SIGGRAPH 2006.

Advancing front

- Next disk distance $[r, 2r]$ from a prior disk
- Inverse transform sampling
 - Given an area formula for a shape
 - Invert it to generate samples uniformly by area

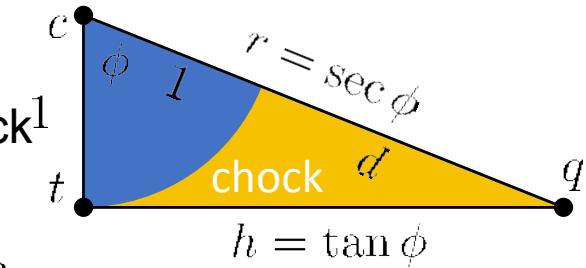


DeterministicMPS

- Uniform-random by area from a sector
 - Area formula
 - Integral over 6 trig and 2 inverse trig functions
 - And 2 variations
 - Inverse area transform
 - Binary search over area integral
 - $O(M(b)(b + \log b)) \times \text{time for integral}$

$M(b)$ = time for b -bit multiplication

- True Poisson-disk pattern
- Uniform-random by area of a chock¹
 - Area formula
 - 1 trig function
 - $A(\phi) = (\tan \phi - \phi)/2$
 - Inverse area transform
 - 5 Newton's iterations for 15 digits of accuracy
 - For higher precision, double precision each iteration
 - $O(M(b) \log b)$



$$A^{-1}(uA) = 5 \text{ Newton's}$$

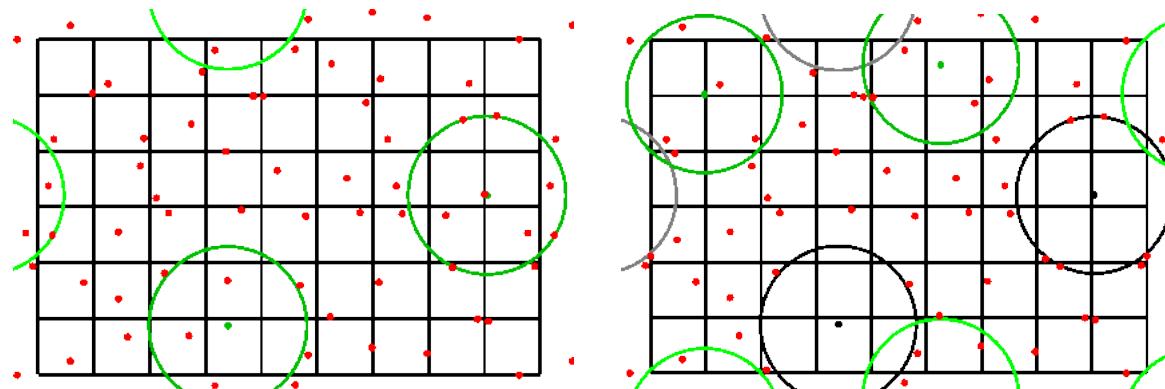
$$\phi_0 = \sqrt[3]{uA}$$

$$\phi_{i+1} = \phi_i - \frac{\tan \phi_i - \phi_i - 2uA}{\tan^2 \phi_i}$$

$$r_s = \sqrt{u \tan^2 \phi_s + 1}$$

GridInner Algorithm

- Background grid
- Each square gets candidate sample
 - Random expovariate time
- Candidates earlier than neighbors **accepted**
 - In any order, congruent to Poisson-disk process
 - Covered neighbors are **resampled**
 - Uncovered scooped-square
 - Time $+=$ expovariate in remaining grid-square area
 $\text{time}(x \in \Omega) = -\ln(v)/\text{Area}(\Omega)$ random $v \in [0, 1]$
 - Repeat until domain is covered
- Congruent to Poisson-disk process



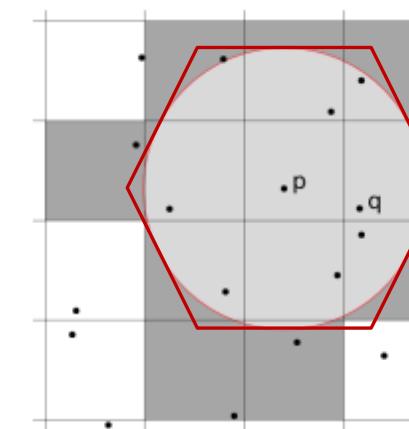
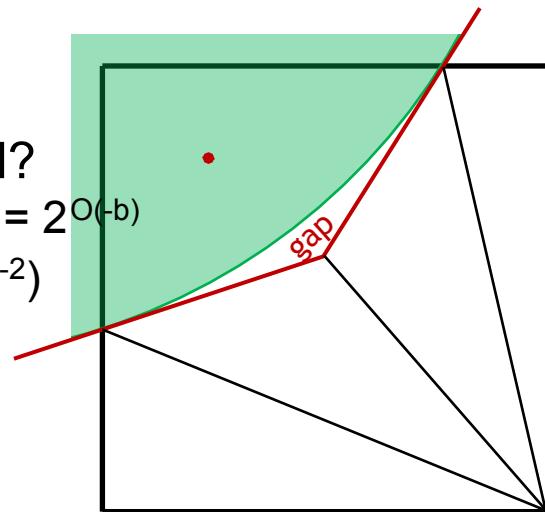
What's not to love?

Resampling implementation

- Disks approximated by s-sided polygons
- Subtract polygon from square
- Triangulate
- Pick a triangle
- Pick sample in triangle

How many sides do we need?

- b-bits of accuracy, need gap $= 2^{O(-b)}$
- **gap** $= 1 - \cos(\pi/s) = O(\text{sides}^{-2})$
- **sides** $= 2^{O(b)}$



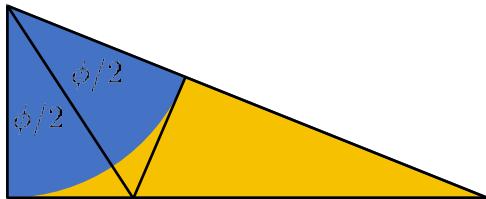
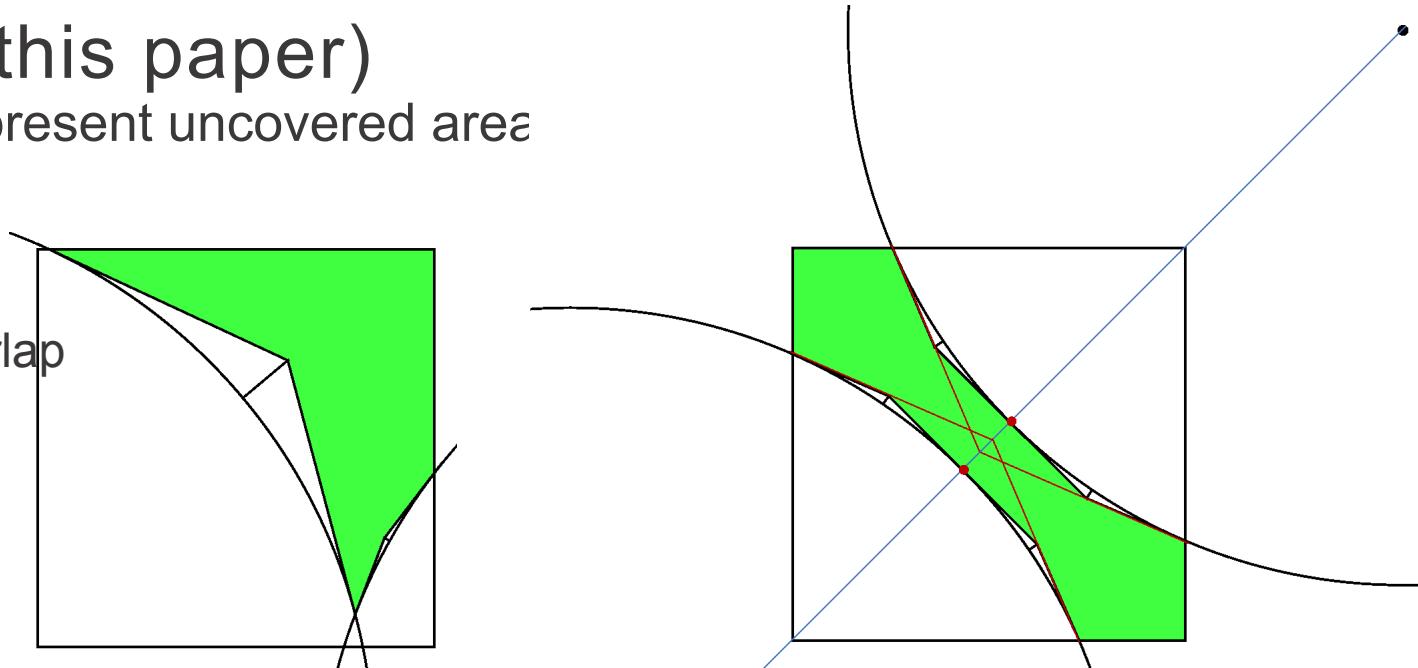
DeterministicMPS (this paper)

Fix: use chocks to exactly represent uncovered area

- Not polygonal approximation

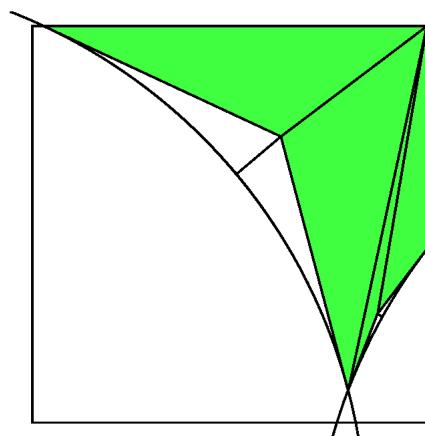
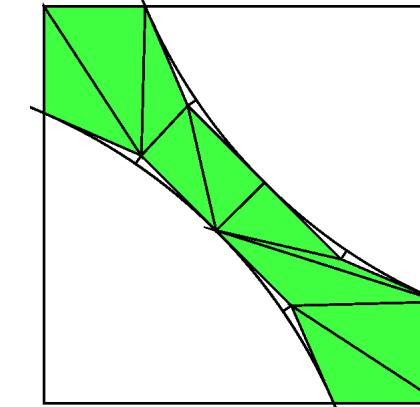
Trim chocks

- Split to ensure they don't overlap

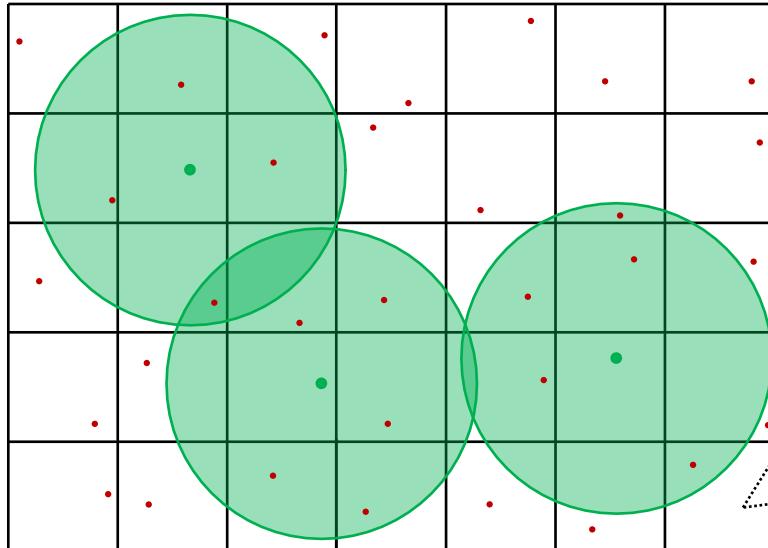
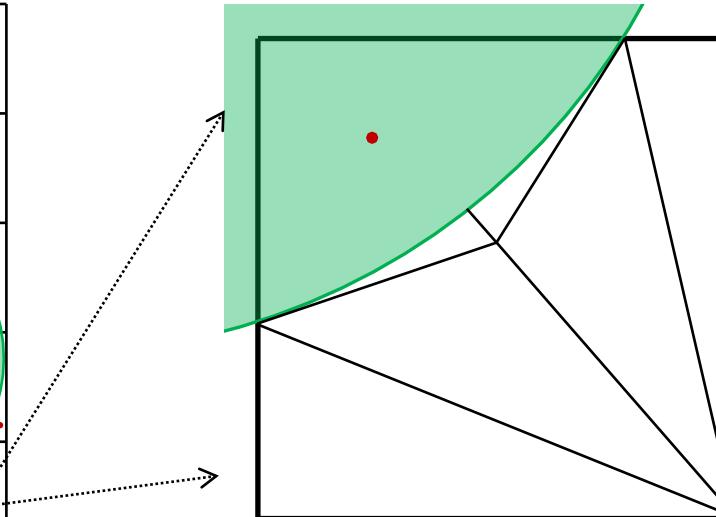
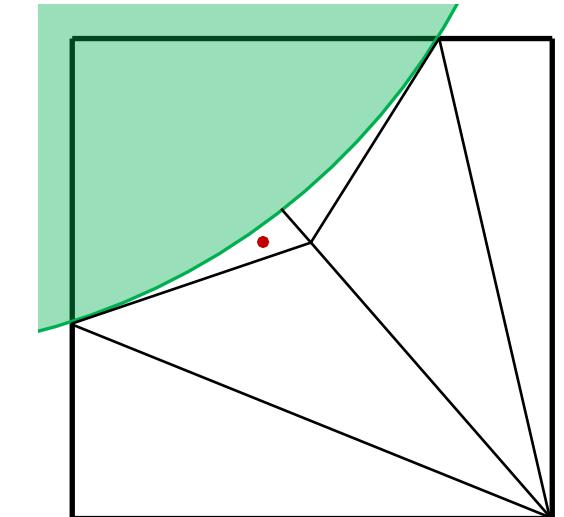


Triangulate remainder

- Ear clipping



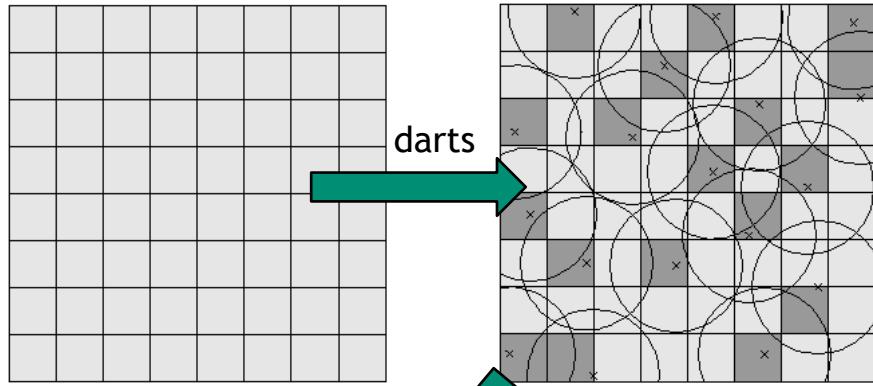
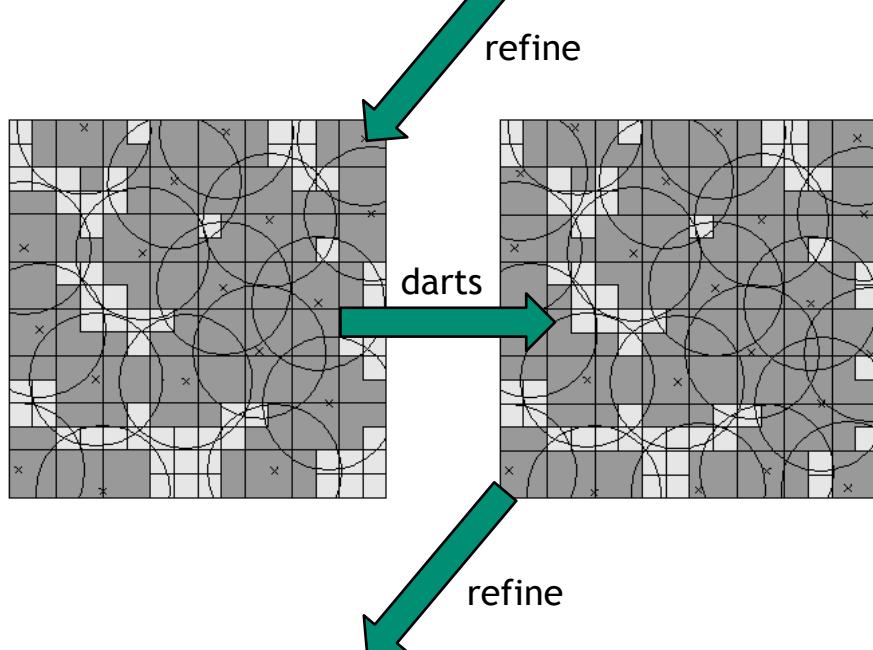
Resampling in constant time, exact up to numerical precision



Simple Maximal Poisson-Disk Sampling

Equivalent to dart-throwing process, identical output

- Guarantees saturation
- Runtime & memory, $\Theta(n)$



SimpleMPS Algorithm

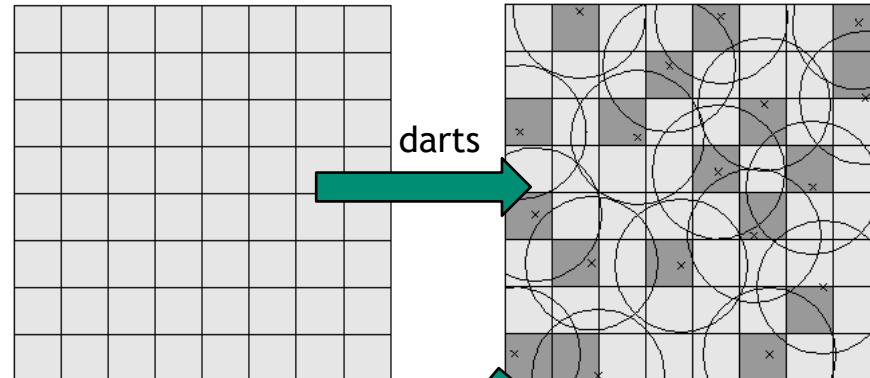
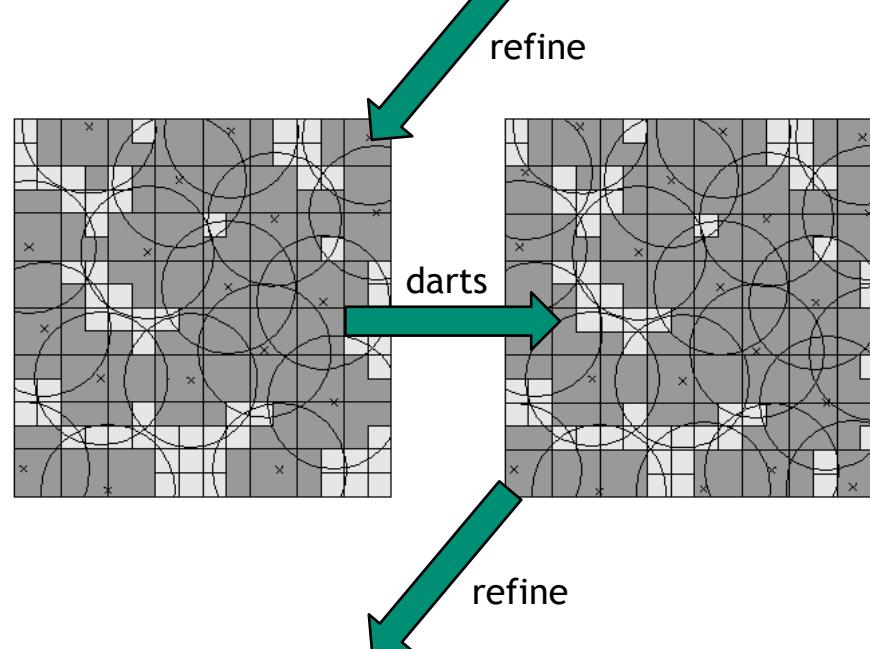
```

divide domain into cubes
while ∃ cubes, and diagonal > machine precision
  do (k × #cubes) times:
    pick a cube
    pick sample from cube
    if distance(sample, prior samples) > r
      accept sample
      discard cube
    refine cubes
    discard covered cubes
  
```

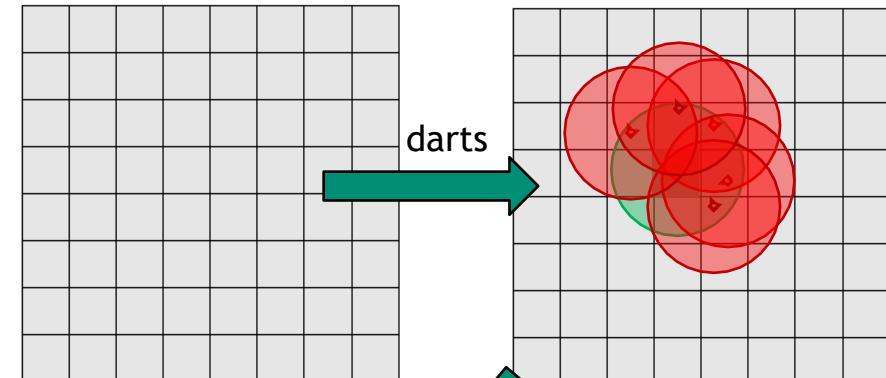
Simple Maximal Poisson-Disk Sampling

Equivalent to dart-throwing process, identical output

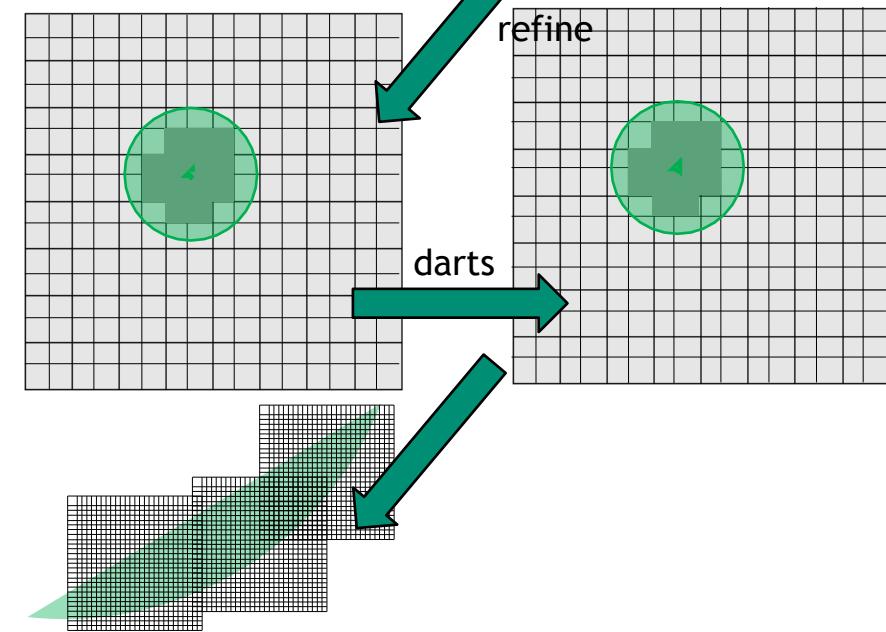
- Guarantees saturation
- Runtime & memory, **empirically** $\mathcal{O}(n)$



Worst case
 $\mathcal{O}(n2^b)$



all missed!



all missed!

refine to machine precision, no more misses

DeterministicMPS relationship summary

GridInner

- Samples from subset of uncovered
- Disk-square geometry construction
- Triangulate
- No rejections
- Exponential complexity in accuracy of subset matching true domain and true Poisson-disk sampling

ScallopMDS

- Samples from subset of uncovered
 - Subset never matches true domain
 - Not Poisson-disk sampling
- No rejections
- Inverse area transform
 - Linear complexity in numerical accuracy

method	approx.	Poisson-disks	maximal	expected time	deterministic time	precision complexity
Dart-throwing [DW85]	outer	Y	-	1	-	1
Scallop-MDS [DH06a]	in	-	Y	-	$n \log n$	$b + \log b$
Voronoi-MPS [Jon06]	outer	Y	Y	$n \log n$	-	1
GridOuter-MPS [EPM [□] 11]	outer	Y	Y	$n \log n$	-	1
Sequential-MPS [ours]	-	Y	Y	-	$n \log n$	$\log b$
Simple-MPS [EPM [□] 12]	outer	Y	Y	n^t	-	2^b
GridInner-MPS [JK11]	in	Y [#]	Y [#]	-	n	2^b
ChockSubdivision-MPS [ours]	-	Y	Y	-	n	$b + \log b$
Deterministic-MPS [ours]	-	Y	Y	-	n	$\log b$

Read paper, Background other MPS

It's excellent, but don't take my word for it, take the reviewers ☺

DeterministicMPS

- No rejections
- Samples exactly from uncovered
- Log complexity in numerical accuracy

SimpleMPS

- Samples from superset of uncovered
- Rejections occur
- Exponential worst-case

Practical Matters

Efficiency in practice

- 100k samples / second
 - Order of magnitude faster than all other maximal Poisson-disk methods compared
 - except SimpleMPS is 2-3× faster!

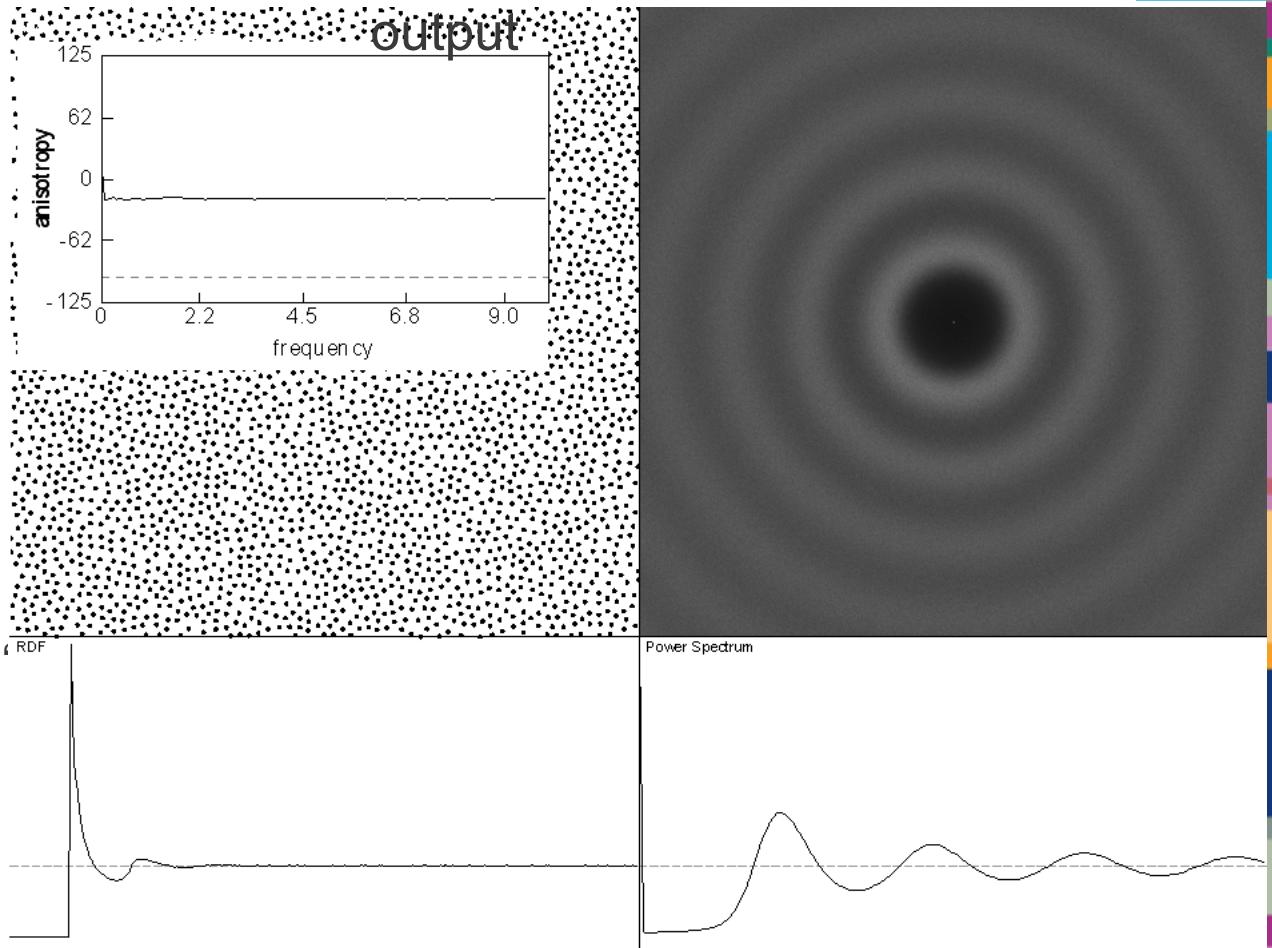
Open source

- <https://github.com/samitch/DeterministicMPS>
- Free for any use
- No dependencies. No libraries. Nothing. Just say
- Replicates paper figures

Code size

- Relatively large due to geometric computations
- Chock sampling itself small, few dozen lines.

Verified true MPS output



Open Problems

DeterministicMPS

- Embedded surfaces
- 3D
- Need new inverse area transforms

Can you prove

- Throw darts into a domain, then constant fraction accepted?
- Serial: SimpleMPS provable expected runtime
- Parallel: PixelPie provable expected constant

Step blue-noise and non-uniform distributions

- Currently
 - Posteriori optimization, slow
 - Priori placement
 - Use chocks to avoid rejections and approximations
 - Complexity?
 - Quickly varying distribution = increased #neighbors

Thank you!

“Il semble que la perfection soit atteinte non quand il n'y a plus rien à ajouter, mais quand il n'y a plus rien à retrancher.”
 “Perfection is achieved, not when there is nothing more to add, but when there is nothing left to take away.”

– Antoine de Saint-Exupéry, [Airman's Odyssey](#)

Open source

- <https://github.com/samitch/DeterministicMPS>
- Free for any use

