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/ Let's talk about CFD.
/o

/" RANS remains the backbone of engineering predictions
because it is computationally affordable.

Therefore, we keep using it even though we know it can
be wildly inaccurate for many aerospace applications.

LES and DNS are much more accurate, but too expensive
to run many cases.

The problem: RANS sucks.
The question: How do we make RANS suck less?

The solution: Incorporate PIV data. e
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Redefine RANS model constants via
a data-driven calibration method.

Goal is to track the vortex pair in
the mean velocity field.

// Application: Supersonic jet in transonic crossflow
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Pl/ Look inside a typical turbulence model.

7 Turbulent viscosity (or eddy viscosity): | |In a k-€ model:

Eype turbulent shear stress 2 «— t.K.e.
— V, =
oUu oV : & == dissipation

3y T 9x T mean strain rate, S, I o Cate

constant

Vi

We can calculate all of these terms directly from PIV!

A simple computation based on the above equations will not suffice.
« Random uncertainty

* Bias error

« Spatial resolution

 Convergence....

The full story: see Miller and Beresh, AIAA Journal, 2021. y .




Usually associated with volumetric
methods to incorporate governing
equations and numerical methods.

Yields higher fidelity velocity fields
and pressure fields.

But they apply only to the test
case measured!

v [m/s]

Our approach yields a generalized
data-driven RANS model with
improved physical fidelity that can
predict any relevant flow case.
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/ Recalibrate RANS based on PIV data.

0.14 Standard

' k-£ model
012 Calibrated
k-&£ model

WY Standard Calibrated
k-¢ model DATA k-¢ model

0.02
Redefine RANS model constant C 0.02
via a Bayesian calibration method. y [m]
_Yields calibrate_d Cﬂ =0.1025 figures from Ray ef .
instead of nominal C,=0.09. AIAA Journal, 2016




) The jet interaction data set.
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Calibrated based on only four PIV
cases:
Transverse jet of varying strength.

The full data set contains 48 test
cases, varying:

» Jet strength

* Nozzle inclination

« Measurement station

Also, PIV test case on a full-scale
vehicle with spin rockets.

/" The jet interaction data set.
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/ Validating the calibrated C, model.

'/We examined six quality metrics.
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// Validating the calibrated C, model.

'/We examined six quality metrics.

Here’s another:
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Here’s one:

Here’s another:

// Validating the calibrated C, model.

'/We examined six quality metrics.
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/ Validating the calibrated C, model.

I '/We examined six quality metrics.
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Five of the six metrics showed substantial |
improvement for nearly every case.

The sixth was indeterminate.

v = N o, =

This simply uses the mean velocity field
from PIV.

PIV can do much much more. How can
we use it for model improvement?
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In a conventional RANS
model, C, = 0.09.

In our calibrated RANS
model, C, = 0.1025.

New approach:

C,is allowed to vary spatially
based on wind tunnel PIV
data, rather than assuming a
fixed constant.

model value
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:calibrated constant

_,/ Move to a spatially variable C, model.

RANS parameter C

. nominal constant i
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/ But we need C,
74 ¢,
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The data provide C,
in only two planes

340

2 =

everywhere!

Machine Iearnlng of C,
from the PIV data..

...constrained by
fluid dynamics:

C, = f(8i,2;

ij, P, €)

We must obtain C over
the entire computatlonal

domain.
— 7S




Now we have a new,
¢, |sophisticated
IO,25 closure model for

P/ Now we have C, everywhere!
74
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RANS!

It adapts to the /ocal
flow behavior to map
loa |C, to any flow

500 topology.

| 0.05

| Generate a predictive capability
200 |generalized to any simulated jet
interaction rather than restricted
2 [mm] to a single test case.
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// How well does this work?

(Let’s skip over the tedious part about building
this model into a production RANS code.)
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The variable C, simulation is nearly identical to the
original k-¢ model without any C, modification.




/ What's going on?
sz

~~ Whatis C, in unmeasured regions?

The PIV data miss important physics near the wall and the
jet nozzle.

Default C, to nominal 0.09.
Avoid extrapolation that “blows up.”

Result: Default Cﬂ dominates the resulit.

Using calibrated C, of 0.1025 shifts result
to match calibrated case.

Another issue is data consistency.

C, model trained using measured k and &, but RANS k and ¢
values may be in error.

- Result: Inconsistent model yields erroneous C,.
' A




// What's next?
/d
" We find ourselves on the cutting edge of
data-driven modeling and machine learning.

Testing novel techniques including inverse
modeling and extrapolation detection.

Some additional digestion of the PIV data
may be required before incorporation into
an altered RANS model.

Data-driven CFD trained with PIV measurements of
|real physics rather than trained with LES/DNS. |
Incorporate PIV data to make RANS suck less.
s




