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Outline2

• Strategy for coarse graining of molecular dynamics (MD) into peridynamics.
• New peridynamic state-based material model.
• Mix-and-match state-based and bond-based terms for different physical effects in the same model.
• Examples.
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Motivation
• There has been a lot of MD work on graphene.
• MD is not practical for many engineering applications.
• Find a material model within a continuum theory.



Peridynamics background3
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Center of smoothing function Atom position

Coarse graining of MD into peridynamics4

• This derivation: SS, Chapter 1 in Peridynamic Modeling, Numerical Techniques, & Applications, E. Oterkus, ed., Elsevier (2021).
• Statistical physics derivation: R. B. Lehoucq & M. P. Sears, Physical Review E (2011).
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Continuous density, external force, and displacement5

Atoms
Each 𝐮(𝐱) represents a weighted 
average of atomic displacements

𝐱



Smoothed displacements follow a nonlocal evolution law6
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• We will use these 𝐟 values from MD to calibrate a peridynamic material model.



MD model of single-sheet graphene

• Tersoff potential*.

• In isotropic extension, the stress-strain curve reaches a maximum at a strain of about 0.24.
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Wow!

* J. Tersoff, Physical Review Letters(1988).
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Peridynamic continuum material model

• Separate terms for
• Stretching of the lattice

• Bending

• Adhesion

• Calibration with coarse grained MD bond forces.
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MD model of graphene: Coarse graining

• Perform MD modeling of a perfect graphene sheet under isotropic extension and uniaxial strain.

• Compute the smoothed (peridynamic) forces and displacements.

• Fit the forces to the bond strains.

• CG nodes have a spacing of about 5 Angstroms (≈ 4 atomic spacings).
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Membrane forces: Ordinary state-based model*10
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*SS et al. "Peridynamic Model for Single-Layer Graphene 
Obtained from Coarse-Grained Bond Forces." Journal of 
Peridynamics and Nonlocal Modeling (2022)



Fit of the softening and bond strain terms11
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Comparison with experimental data for single-sheet graphene12

• Atomic force microscope probe deflects a graphene sheet fixed at edges*.

* C. Lee et al., Science (2008).
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Post-failure graphene sheet13

• Radial cracks result in petals.

• C. Lee et al., Science (2008).
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Now add bending to the peridynamic model14

• Everything up to now was restricted to in-plane deformation.
• Now include bending – with single or multiple sheets.
• We can do this without adding rotational degrees of freedom.
• Use a non-ordinary state-based model that exerts out-of-plane forces that resist bending.*

• J. O’Grady & J. Foster, Intl J Solids & Structures (2014).
• J. O’Grady & J. Foster, Computational Mechanics (2016).
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NOSB peridynamic model for bending forces15
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• J. O’Grady & J. Foster, Intl J Solids & Structures (2014).
• J. O’Grady & J. Foster, Computational Mechanics (2016).



Calibrating the NOSB bending model16
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• It’s hard to think up MD simulations where the membrane stresses don’t mask the bending response in a curved sheet.
• Use free bending vibrations to avoid imposing boundary conditions.



Adhesion between sheets17

• Sheets adhere to each other by van der Waals forces.
• These are much more compliant than the covalent bonds in the hex lattice.

𝐸membrane ≈ 1000GPa, 𝐸adhesion ≈ 3GPa
• Interlayer forces in MD are modeled with a Lennard-Jones potential.*

*S. J. Stuart et al., J. Chem. Phys (2000)
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Bond-based model for adhesive forces18

• 𝐟adhesion is found from linear bond-based interactions.
• Calibrated to match MD results for elastic modulus and fracture energy (area under curve).
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Verification: 2-layer film under transverse loading19
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• Compare the new peridynamic model with MD.



Verification: Impact of a sphere on a 2-layer film20
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• Compare the new peridynamic model with MD.



Verification: Decohesion of two layers21

• Two rectangular subregions separate, creating a tent-like feature behind the advancing crack.
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Wrinkling22

Isotropic compression

Rigid
Rigid

Uniaxial strain in tension

• Buckling happens easily under compression due to low bending rigidity.
• Negative Poisson ratio makes the membrane try to puff out under tension.



Discussion23

• The new material model adds bending and adhesive forces to the in-plane forces.
• Big reduction in computational resources over MD due to fewer nodes and larger time step size.
• Bond breakage criterion can be calibrated to get the right fracture energy. 
• Machine learning was not used here but has been applied to develop nonlocal kernels for 

graphene  in simpler cases*.

* H. You et al. "A data-driven peridynamic continuum model for upscaling molecular dynamics." Computer Methods in Applied Mechanics and 
Engineering (2022).


