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2 I Motivation

The past decades have seen tremendous investment in simulation
frameworks for coupled multi-scale and multi-physics problems.

* Frameworks rely on established mathematical theories to couple physics components.
* Most existing coupling frameworks are based on traditional discretization methods.
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Nonlocal integral
Classical DFT,
Atomistic...

Meshless (SPH, MLS),
Implicit, explicit,
Eulerian, Lagrangian...

Partitioned (loose) coupling
Iterative (Schwarz, optimization)




Motivation

The past decades have seen tremendous investment in simulation
frameworks for coupled multi-scale and multi-physics problems.

* Frameworks rely on established mathematical theories to couple physics components.
* Most existing coupling frameworks are based on traditional discretization methods.
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Complex System Model Traditional Methods Coupled Numerical Model Traditional + Data-Driven Methods

* PDEs, ODEs * Mesh-based (FE, FV, FD) « Monolithic (Lagrange multipliers) * PINNs
* Nonlocal integral * Meshless (SPH, MLS) » Partitioned (loose) coupling * Neural ODEs
» Classical DFT * Implicit, explicit » lterative (Schwarz, optimization) * Projection-based ROMs, ...

Atomistic, ... Eulerian, Lagrangian, ...

« There is currently a big push to integrate data-driven methods into modeling & simulation toolchains.

Unfortunately, existing algorithmic and software infrastructures are ill-equipped to
handle plug-and-play integration of non-traditional, data-driven models!



+ I Flexible Heterogeneous Numerical Methods (fHNM) Project

Principal research objective:
» Discover mathematical principles guiding the assembly of standard and data-driven numerical models
into stable, accurate and physically consistent flexible Heterogeneous Numerical Methods

Principal research challenges: we lack mathematical and algorithmic understanding of how to
 “Mix-and-match” standard and data-driven models from three-classes

» Class A: projection-based reduced order models (ROMs) | This talk
» Class B: machine-learned models, i.e., Physics-Informed Neural Networks (PINNs)

» Class C: flow map approximation models, i.e., dynamic model decomposition (DMD) models

« Ensure well-posedness & physical consistency of the resulting heterogeneous models.

» Solve such heterogeneous models efficiently.
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Three coupling methods:
« Alternating Schwarz-based coupling This talk
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« Optimization-based coupling

* Generalized mortar methods Talk by A. DeCastro
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7 | Schwarz Alternating Method for Domain Decomposition £ _

Fa

= Proposed in 1870 by H. Schwarz for solving Laplace PDE on irregular domains. (A

Crux of Method: if the solution is known in regularly shaped domains, use “*
those as pieces to iteratively build a solution for the more complex domain. H. Schwarz (1843-1921)

Basic Schwarz Algorithm overlapping

Initialize:
= Solve PDE by any method on Q, w/ initial guess for transmission BCs on I}.
Iterate until convergence:

= Solve PDE by any method on Q, w/ transmission BCs on I, based on values .
just obtained for (,. non-overlapping

= Solve PDE by any method on Q, w/ transmission BCs on I'; based on values a

o3 T 05

just obtained for (Q,.

an

o0

= Schwarz alternating method most commonly used as a preconditioner for Krylov iterative methods
to solve linear algebraic equations.

Novel idea: using the Schwarz alternating as a discretization method for
solving multi-scale or multi-physics partial differential equations (PDEs).



s | How We Use the Schwarz Alternating Method

AS A PRECONDITIONER
FOR THE LINEARIZED
SYSTEM

AS A SOLVER FOR THE
COUPLED

FULLY NONLINEAR
PROBLEM




o I Spatial Coupling via Alternating Schwarz

Overlapping Domain Decomposition

Model PDE: {

U g, on 0f)

0

( ﬁu?“ = f, in €y,
?‘1+1 _ 'S
¢ U o= g, on 0 \I'y,
\ "f.ﬁ’l"+ = wy, on Iy,
( E'U,S'-I_l = . in 9,
n+1 _ <
¢ u?H = g, . on d€s\I's,
n . .n
L U = wu; -, onlg.

Dirichlet-Dirichlet transmission
BCs [Schwarz, 1870; Lions, 1988]

Lu = f, in (), I
i

Non-overlapping Domain Decomposition

(2

LuT™ = f, in (4,
u?“ = g, on M \T,
'ILT'+1 — An-Ha on F:
ﬁuﬁ"“ = f, in €29, Ql /J J
u'gﬂ = g, on O\,
ul ! : o oul!!
{r'jrl'g o f‘.]I‘lg ¥ on F"'

An+1 =0uy + (1 —0)\,, onT, forn > 1.

Relevant for multi-material and multi-
physics coupling

Alternating Dirichlet-Neumann
transmission BCs [Zanolli et al., 1987] §

Robin-Robin transmission BCs also lead I
to convergence [Lions,1990]

8 € |0,1]: relaxation parameter (can
help convergence) L



o I Time-Advancement Within the Schwarz Framework

Controller time stepper

| Time integrator for €2,

Q, | | Time integrator for (2,

Step 0: Initialize i = 0 (controller time index).

w = f—Lu, in
Model PDE: { wu(xz,t) = g(t), on 0f),
u(z,0) = wug, in Q




11 I Time-Advancement Within the Schwarz Framework

| TO

IT1

Integrate using At,

Interpolate
TN in to T}

Step 0: Initialize i = 0 (controller time index).

Controller time stepper

Time integrator for (2,

Time integrator for (2,

Step 1: Advance (1, solution from time T; to time T;,, using time-stepper in ; with time-step 4t,, using

solution in (), interpolated to I'; at times T; + nat;.

Model PDE: {

w = f—Lu, in
= g(t), on 0f2,
u(z,0) = wug, in 2

=

£

=
|




2 I Time-Advancement Within the Schwarz Framework

Ty ' Ty
Controller time stepper
| |
I Time integrator for (2,
| Interpolatel
«~ M from 0, tol;
Q, > Time integrator for (2,

' Integrate using At, '

Step 0: Initialize i = 0 (controller time index).

Step 1: Advance (1, solution from time T; to time T;,; using time-stepper in (; with time-step 4t;, using
solution in (), interpolated to I'; at times T; + n4t;.

Step 2: Advance (), solution from time T; to time T;, 4 using time-stepper in (0, with time-step A4t,, using
solution in (), interpolated to I, at times T; + n4t,.

u = f—Lu, in €,
Model PDE: { wu(xz,t) = g(t), on 0f),
= up, in €2

S
o
=
=

|




13

Time-Advancement Within the Schwarz Framework

Q, Ty - Ty
Controller time stepper
7 | |
= I Time integrator for £2,
|
| |
Q, | | | Time integrator for (2,

Step 0: Initialize i = 0 (controller time index).

Step 1: Advance (), solution from time T; to time T;,; using time-stepper in (; with time-step 4t;, using
solution in (), interpolated to I'; at times T; + nAt;.

Step 2: Advance (), solution from time T; to time T;, 4 using time-stepper in (0, with time-step A4t,, using
solution in (), interpolated to I, at times T; + nAt,.

Step 3: Check for convergence at time T, ;. u = f—Lu, inf,
Model PDE: { u(x,t) = g(t), on 0%,
u(z,0) = up. in 2
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Time-Advancement Within the Schwarz Framework

Q, Ty Ty
T I Integrate using At |
T Interpolate [from
| AN Q,toly
Q, I |
|

Step 0: Initialize i = 0 (controller time index).

Controller time stepper

Time integrator for £2,

Time integrator for (2,

Step 1: Advance (), solution from time T; to time T;,, using time-stepper in (; with time-step 4t;, using

solution in ), interpolated to I'; at times T; + nAt;.

Step 2: Advance ), solution from time T; to time T;, 4 using time-stepper in Q, with time-step A4t,, using

solution in (), interpolated to I, at times T; + n4t,.

Step 3: Check for convergence at time T, .
» If unconverged, return to Step 1.

Model PDE: {

u = f—Lu, in €,
u(z,t) g(t), on Jf2,
u(z,0) = up. in 2




s I Time-Advancement Within the Schwarz Framework

Q, Tl TZ
Controller time stepper
I Integrate using At;
T Interpolate from Time integrator for (2,
.ﬂ.z to r]_ / \ |
Q, | | Time integrator for (2,

Can use different integrators with
Step 0: Initialize i = 0 (controller time index). different time steps within each domain!

Step 1: Advance ), solution from time T; to time T;,; using time-stepper in (; with time-step 4t;, using
solution in (), interpolated to I'; at times T; + nAt;.

Step 2: Advance (), solution from time T; to time T;, 4 using time-stepper in (0, with time-step A4t,, using
solution in (), interpolated to I, at times T; + n4t,.

Step 3: Check for convergence at time T, ;. u = f—Lu, inf,
> If unconverged, return to Step 1. Model PDE: { wu(z,t) = g(t), on 0%,
» |If converged, set i = i + 1 and return to Step 1. u(z,0) = uo, in {2




« | Schwarz for Multi-scale FOM-FOM Coupling in Solid

Mechanics Model Solid Mechanics PDEs:
Coupling is concurrent (two-way). Quasistatic: DivP +pgB =0 in ()
Ease of implementation into existing massively- | Dynamic: DivP +p9B =pp¢p in QxI
parallel HPC codes.

Scalable, fast, robust (we target real engineering
problems, e.g., analyses involving failure of bolted
components!).

Coupling does not introduce nonphysical artifacts.

Theoretical convergence properties/guarantees.

“Plug-and-play” framework:

> Ability to couple regions with different non-conformal meshes, different element types
and different levels of refinement to simplify task of meshing complex geometries.

> Ability to use different solvers/time-integrators in different regions.



17 1 Mechanics and Contact Dynamics
The overlapping Schwarz alternating method has been developed/implemented for concurrent

Wall Tine iy

CPU #
times Schwarz
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Schwarz for Multi-scale FOM-FOM Coupling in Solid

multi-scale quasistatic’ & dynamic? modeling in Sandia’s Albany/LCM and Sierra/SM codes.

contact point position
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We are currently developing a novel contact
method? based on non-overlapping Schwarz.
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Schwarz for Multi-scale FOM-FOM Coupling in Solid

18 I Mechanics and Contact Dynamics
The overlapping Schwarz alternating method has been developed/implemented for concurrent

Wall Tine iy

multi-scale quasistatic’ & dynamic? modeling in Sandia’s Albany/LCM and Sierra/SM codes.
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contact point position

We are currently developing a novel contact
method? based on non-overlapping Schwarz.
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Projection-Based Model Order Reduction via the

POD/Galerkin, Mathade Fom):

Md_if + fint(x) = fext(x)

1 o ACqU]S]tlon Number of
time steps

<+—>
A

/7 5
B 18

Solve ODE at different
design points

Number of State
Variables

v

Save solution data

2. Learning

Proper Orthogonal Decomposition (POD):

X = - U )N v’

3. Projection-Based Reduction

~ X(r

T ‘I’Tfint(‘pi) =

Reduce the
number of
unknowns

Perform
Galerkin
projection

T M X
" MD

Hyper-reduce r. (p3)~ A4

nonlinear

terms

=2

Hyper-reduction/sample mesh

q)Tf ext

fint(PX)
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2 | Schwarz Extensions to ROM-FOM and ROM-ROM

Couplings
Enforcement of Dirichlet boundary conditions (DBCs) in ROM at indices ip;,

* Method | in [Gunzburger et al. 2007] is employed
d(t) =d +@d(t), v(t) =D+ dD(t), a(t) =a+ Pa(t)
» POD modes made to satisfy homogeneous DBCs: @(ip;i.,:) =0
» BCs imposed by modifying d, v, a: d(ipi.) < xa, V(ipir) < X», @(ipir) < Xa

Choice of domain decomposition
« Error-based indicators that help decide in what region of the domain a ROM can be viable

should drive domain decomposition (future work)

Snapshot collection and reduced basis construction
 |deally, one would generate snapshots/reduced bases separately in each subdomain ;

» POD results presented herein use snapshots obtained via FOM-FOM coupling on Q = U; ;

For nonlinear solid mechanics, special hyper-reduction methods need to preserve Hamiltonian
structure, e.g., Energy-Conserving Sampling and Weighting Method (ECSW) [Farhat et al. 2015]

« Results here are for linear problem, so hyper-reduction is not required

I I Em B
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2« I Numerical Example: Linear Elastic Wave Propagation

Problem
« Linear elastic clamped beam with Gaussian initial condition for the z-displacement.

* Simple problem with analytical exact solution but very stringent test for
discretization methods.

* Couplings tested: FOM-FOM, FOM-ROM, ROM-ROM, implicit-explicit, implicit-implicit,
explicit-explicit.

* ROMs are reproductive and based on the 0.01 displecement. Ssapstio} 1, tme = 0
POD/Galerkin method. e
» 50 POD modes capture ~100% snapshot 0.006
energy 0.004

0.002

-0.002 |
-0.004
-0.006

-0.008

Above: 3D rendering of clamped beam with Gaussian initial condition. o
-0.01

Right: Initial condition (blue) and final solution (red). Wave profile is 0 0.2 0.4 0.6 0.8
negative of initial profile at time T = 1.0e-3.



Linear Elastic Wave Propagation Problem: FOM-ROM and
» ¥ ROM-ROM Couplings

Coupling delivers accurate solution if each subdomain model is reasonably accurate,
can couple different discretizations with different Ax, At and basis sizes.

0.01 displacement, snaishot 1, time=0

-0.01

0 0.2 0.4 0.6 0.8 1
velocity, snapshot 1, time =0

1 1 1 1
0 0.2 0.4 0.6 0.8 1
<107 acceleration, snapshot 1, time = 0

Single Domain FOM

-0.01

0 0.2 0.4 056 08 0.0, 0.2 0.4 06 0.8 1
__velocity, snapshot 1, time =0 _ velocity, snapshot 1, time = 0
200} 200} ' ' I I
O — e e
-200} . . . . -200}
o 0.2 0.4 0.6 0.8 0 0.2 0'.4 0.6 0.8 1
, <107 acceleration, snapshot 1, time = 0 107 acceleration, snapshot 1, time = 0
L 2F T T T T

0.01 displacement, snapshot 1, time = 0 displacement, snapshot 1, time = 0
a : ) ! : 0.01 T T N T T

o 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 1

3 overlapping subdomain
ROM'-FOMZ-ROM3

2 non-overlapping subdomain
FOM4-ROM> (68 = 1)

oo 1
' ' 0 2, 0.5 0 03
— 0, 1 '—'Q 2,
A 11

SImplicit FOM, At =2.25e-7,
Ax =1e-6

“Explicit 50 mode POD ROM,
At =2.25e-7, Ax =1e-6

"Implicit 40 mode POD ROM, At=1e-6, Ax=1.25e-3
Implicit FOM, At =1e-6, Ax =8.33e-4
3Explicit 50 mode POD ROM, At =1e-7, Ax =1e-3

—
0.25 23 0.75




26 | Linear Elastic Wave Propagation Problem: FOM-ROM and
ROM-ROM Couplings

Coupled models are reasonably accurate w.r.t. FOM-FOM coupled analogs and convergence
with respect to basis refinement for ROM-FOM and ROM-ROM coupling is observed.

MSE in displacement for 2

_ disp MSE® | velo MSE | subdomain ROM-ROM coupling

Overlapping ROM'-FOM2-ROM3  1.05e-4  1.40e-3  2.32e-2 W . l

Non-overlapping FOM4-ROM>  2.78e-5  2.20e-4  3.30e-3 |

TImplicit 40 mode POD ROM, At =1e-6, Ax =1.25e-3 | o
‘Implicit FOM, At =1e-6, Ax =8.33e-4 M o
3Explicit 50 mode POD ROM, At =1e-7, Ax =1e-3

“Implicit FOM, At =2.25e-7, Ax =1e-6

SExplicit 50 mode POD ROM, At =2.25e-7, Ax =1e-6

Ny Ny
6MSE= mean squared error = J Z |a" () — u™ (P‘J)”i/J Z [u" (p) Hi
n=1 n=1

# POD modes in (Q,



Linear Elastic Wave Propagation Problem: FOM-ROM and
¥ ROM-ROM Couplings

Onlil:\e TOtal .# 357 _———EEEE::LE'SEMPOD J CPU-Time
CPU time | Schwarz iters N FOM-FOM:
Overlapping FOM!-FOM2-FOM? |  68.7s 2972 Sl | l | cpeet
| ! LPU-1HNE
Overlapping ROM4-FOM2-ROMS |  81.6s 4000 S I— ) FOM-ROM;
o 15 : : | 1 .16€e
Non-overlapping FOMé-FOM? 38.0s 10,516 A : : | CPU-Time
** ROM-ROM:
Non-overlapping FOM®-ROM? 49.8s 13,366 I, =1[0,0.75], Q,= [0.25,1] 7.16ef
ROM-FOM and ROM-ROM couplings often (but not always) increase # time o
Schwarz iterations relative to FOM-FOM coupling. 'Implicit FOM, At =1e-6, Ax =1.25e-3
) _ o , , _ _ 2Implicit FOM, At =1e-6, Ax =8.33e-4
» Key to improving efficiency is reducing # Schwarz iterations. SExplicit FOM, At =1e-7, Ax =1e-3
“Implicit 30 mode POD ROM, At =1e-6, Ax =1.25e-3
ROMs with fewer modes do not always give rise to smaller CPU times. *Explicit 50 mode POD ROM, At =1e-7, Ax =1e-3

Simplicit FOM, At =2.25e-7, Ax =1e-6

» Less accurate models = more Schwarz iterations needed for convergence.  7Explicit FOM, At =2.25e-7, Ax =1e-6
8Explicit 50 mode POD ROM, At =2.25e-7, Ax =1e-6

Using smaller time steps can decrease # Schwarz iterations.

WIP: optimizing ROM-FOM and ROM-ROM coupling implementation and devising ways to
reduce # Schwarz iterations (e.g., through relaxation parameter 6)



Linear Elastic Wave Propagation Problem: FOM-ROM and
ROM-ROM Couplings

Inaccurate model + accurate model + accurate model. Accuracy can be improved by “gluing”
several smaller, spatially-local models
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Figures above: Q, = [0,0.75], Q,=[0.25,1] Observation suggests need. fpr
“smart” domain decomposition.
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30

Summary & Future Work

Summary:

Initial prototyping suggests that the Schwarz alternating method can be effective coupling method that
enables coupling of conventional and data-driven models (projection-based ROMs).

The coupling methodology enables the use of different mesh resolutions, reduced basis sizes, and different
time integrators with different time steps in different subdomains.

Preliminary results suggest that the choice of domain decomposition (DD) is critical to accuracy of the
coupled model.

Ongoing/future work:

Implementation/prototyping of coupling method on non-linear problems with ECSW-based hyper-reduction.
Implementation/prototyping of coupling method in multi-D.

Investigation of methodologies for reducing the number of Schwarz iterations and improving performance
when performing FOM-ROM and ROM-ROM coupling.

Development of error indicators to guide DD in an error-controlling way, e.g., [Bergmann et al. 2018].
Analysis of proposed coupling approach for FOM-ROM and ROM-ROM coupling.

Development of snapshot collection approaches that do not require full system simulation.

Extension of the coupling framework to include Physics-Informed Neural Networks (PINNs).

Extension of coupling method to multi-material and multi-physics problems.
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Start of Backup Slides




Linear Elastic Wave Propagation Problem: FOM-ROM and

3 ¥ ROM-ROM Couplings

Coupling delivers accurate solution if each subdomain model is reasonably accurate,
can couple different discretizations with different Ax, At and basis sizes.
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