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2 Motivation
The past decades have seen tremendous investment in simulation 
frameworks for coupled multi-scale and multi-physics problems.  

• Frameworks rely on established mathematical theories to couple physics components.
• Most existing coupling frameworks are based on traditional discretization methods.

• Monolithic (Lagrange multipliers)
• Partitioned (loose) coupling
• Iterative (Schwarz, optimization)
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Traditional + Data-Driven Methods

• PINNs
• Neural ODEs
• Projection-based ROMs, …

Unfortunately, existing algorithmic and software infrastructures are ill-equipped to 
handle plug-and-play integration of non-traditional, data-driven models!

• There is currently a big push to integrate data-driven methods into modeling & simulation toolchains.



• Alternating Schwarz-based coupling

• Optimization-based coupling

• Generalized mortar methods

4 Flexible Heterogeneous Numerical Methods (fHNM) Project
Principal research objective: 

• Discover mathematical principles guiding the assembly of standard and data-driven numerical models 
into stable, accurate and physically consistent flexible Heterogeneous Numerical Methods 

Principal research challenges: we lack mathematical and algorithmic understanding of how to 
• “Mix-and-match” standard and data-driven models from three-classes

 Class A: projection-based reduced order models (ROMs)
 Class B: machine-learned models, i.e., Physics-Informed Neural Networks (PINNs)
 Class C: flow map approximation models, i.e., dynamic model decomposition (DMD) models

• Ensure well-posedness & physical consistency of the resulting heterogeneous models.
• Solve such heterogeneous models efficiently.

Three coupling methods:
This talk

This talk

Talk by A. DeCastro
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7 Schwarz Alternating Method for Domain Decomposition
 Proposed in 1870 by H. Schwarz for solving Laplace PDE on irregular domains.

H. Schwarz (1843–1921)

Crux of Method: if the solution is known in regularly shaped domains, use 
those as pieces to iteratively build a solution for the more complex domain.

Basic Schwarz Algorithm

2Lions, 1990. 3Zanolli et al., 1987. 

overlapping

non-overlapping

 Schwarz alternating method most commonly used as a preconditioner for Krylov iterative methods 
to solve linear algebraic equations.

Novel idea: using the Schwarz alternating as a discretization method for 
solving multi-scale or multi-physics partial differential equations (PDEs).
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AS A PRECONDITIONER 
FOR THE LINEARIZED 
SYSTEM

AS A SOLVER FOR THE 
COUPLED
FULLY NONLINEAR 
PROBLEM

How We Use the Schwarz Alternating Method8



9 Spatial Coupling via Alternating Schwarz
Overlapping Domain Decomposition

Non-overlapping Domain Decomposition

• Dirichlet-Dirichlet transmission 
BCs [Schwarz, 1870; Lions, 1988]

Model PDE:
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Can use different integrators with 
different time steps within each domain!

15 Time-Advancement Within the Schwarz Framework

Controller time stepper

Time integrator for W1

Time integrator for W2

Model PDE:



• Coupling is concurrent (two-way).

• Ease of implementation into existing massively-
parallel HPC codes.

• Scalable, fast, robust (we target real engineering 
problems, e.g., analyses involving failure of bolted 
components!).

• Coupling does not introduce nonphysical artifacts.

• Theoretical convergence properties/guarantees.

16

• “Plug-and-play” framework:

 Ability to couple regions with different non-conformal meshes, different element types 
and different levels of refinement to simplify task of meshing complex geometries.

 Ability to use different solvers/time-integrators in different regions.

Model Solid Mechanics PDEs:

Quasistatic:

Dynamic:

Schwarz for Multi-scale FOM-FOM Coupling in Solid 
Mechanics
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Schwarz for Multi-scale FOM-FOM Coupling in Solid 
Mechanics and Contact Dynamics 

The overlapping Schwarz alternating method has been developed/implemented for concurrent 
multi-scale quasistatic1 & dynamic2 modeling in Sandia’s Albany/LCM and Sierra/SM codes.

CPU 
times

# 
Schwarz 

iters
3h 34m

Schwarz 2h 42m 3.22

1Mota et al., 2017.  2Mota et al., 2022.

We are currently developing a novel contact 
method3 based on non-overlapping Schwarz.

3Hoy et al., 2021; 
Mota et al., 2022.
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Talk by A. Mota
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20 Projection-Based Model Order Reduction via the 
POD/Galerkin Method

20

Proper Orthogonal Decomposition (POD):

Solve ODE at different 
design points

1. Acquisition

2. Learning

3. Projection-Based ReductionNumber of 
time steps
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Save solution data

Reduce the 
number of 
unknowns

Perform 
Galerkin 
projection

Hyper-reduce 
nonlinear 
terms

Hyper-reduction/sample mesh
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22 Schwarz Extensions to ROM-FOM and ROM-ROM 
Couplings

22

Choice of domain decomposition
• Error-based indicators that help decide in what region of the domain a ROM can be viable       

should drive domain decomposition (future work)

For nonlinear solid mechanics, special hyper-reduction methods need to preserve Hamiltonian 
structure, e.g., Energy-Conserving Sampling and Weighting Method (ECSW) [Farhat et al.  2015]

• Results here are for linear problem, so hyper-reduction is not required
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24 Numerical Example: Linear Elastic Wave Propagation 
Problem

24

• Linear elastic clamped beam with Gaussian initial condition for the ᵆ� -displacement.

• Simple problem with analytical exact solution but very stringent test for 
discretization methods.

• Couplings tested: FOM-FOM, FOM-ROM, ROM-ROM, implicit-explicit, implicit-implicit, 
explicit-explicit.

Above: 3D rendering of clamped beam with Gaussian initial condition.  
Right: Initial condition (blue) and final solution (red).  Wave profile is 

negative of initial profile at time  T = 1.0e-3.
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Linear Elastic Wave Propagation Problem: FOM-ROM and 
ROM-ROM Couplings

Single Domain FOM 3 overlapping subdomain     
ROM1-FOM2-ROM3
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26 Linear Elastic Wave Propagation Problem: FOM-ROM and 
ROM-ROM Couplings

MSE in displacement for 2 
subdomain ROM-ROM couplingdisp MSE6 velo MSE acce MSE

Overlapping ROM1-FOM2-ROM3 1.05e-4 1.40e-3 2.32e-2

Non-overlapping FOM4-ROM5 2.78e-5 2.20e-4 3.30e-3

6MSE=

Coupled models are reasonably accurate w.r.t. FOM-FOM coupled analogs and convergence 
with respect to basis refinement for ROM-FOM and ROM-ROM coupling is observed.
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Linear Elastic Wave Propagation Problem: FOM-ROM and 
ROM-ROM Couplings

Online 
CPU time

Total # 
Schwarz iters

Overlapping FOM1-FOM2-FOM3 68.7s 2972

Overlapping ROM4-FOM2-ROM5 81.6s 4000

Non-overlapping FOM6-FOM7 38.0s 10,516

Non-overlapping FOM6-ROM8 49.8s 13,366

CPU-Time 
FOM-FOM: 

7.48e1
CPU-Time 
FOM-ROM: 

1.16e2
CPU-Time 
ROM-ROM: 

7.16e1

ROM-FOM and ROM-ROM couplings often (but not always) increase # 
Schwarz iterations relative to FOM-FOM coupling.
 Key to improving efficiency is reducing # Schwarz iterations.

time

# 
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Single Domain, 10 mode POD

10 mode POD – 50 mode POD 10 mode POD – FOM 20 mode POD – FOM

10 mode POD – 10 mode POD

Accuracy can be improved by “gluing” 
several smaller, spatially-local models

Single Domain, FOM (truth)

Linear Elastic Wave Propagation Problem: FOM-ROM and 
ROM-ROM Couplings

Observation suggests need for 
“smart” domain decomposition.
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30 Summary & Future Work
Summary:

• Initial prototyping suggests that the Schwarz alternating method can be effective coupling method that 
enables coupling of conventional and data-driven models (projection-based ROMs). 

• The coupling methodology enables the use of different mesh resolutions, reduced basis sizes, and different 
time integrators with different time steps in different subdomains.

• Preliminary results suggest that the choice of domain decomposition (DD) is critical to accuracy of the 
coupled model.

Ongoing/future work:

• Implementation/prototyping of coupling method on non-linear problems with ECSW-based hyper-reduction.
• Implementation/prototyping of coupling method in multi-D.
• Investigation of methodologies for reducing the number of Schwarz iterations and improving performance 

when performing FOM-ROM and ROM-ROM coupling.
• Development of error indicators to guide DD in an error-controlling way, e.g., [Bergmann et al. 2018].
• Analysis of proposed coupling approach for FOM-ROM and ROM-ROM coupling.
• Development of snapshot collection approaches that do not require full system simulation.
• Extension of the coupling framework to include Physics-Informed Neural Networks (PINNs).
• Extension of coupling method to multi-material and multi-physics problems.
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