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2 ‘ Gas transport in the subsurface

Problem
* Subsurface gas transport behavior can show significant deviations from conceptual models that do not include
the chemical or physical properties of the host rock.
* Existing gas transport codes: input parameters derived from core samples, or assume homogeneous rock phases.
* Relevance: trace gas migration, extraction, sequestration
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Strategy. Obtain a fundamental understanding of gas migration in porous media, particularly for which
adsorption could affect the transport properties.

Gas properties in pure mineral phases — Predicted transport in different lithologies (shale, granite, tuff)



Transport Modeling: Testing of 2D Field Scale Model in PFLOTRAN
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) ‘ Gas adsorption in zeolites

Argon Adsorption Xenon Adsorption Zeolites are common mineral constituents in many geologic environments.
100
100 —— Clinoptilolite Nanopores are responsible for gas adsorption and separation properties.
o - —— Mordenite
&5 ol 10 }| —Quartz Noble gas uptake facilitates a systematic variation of size effects.
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Adsorption isotherms
* Enhanced adsorption in nanoporous zeolites vs. nonporous quartz.

* Reduced Xe adsorption in clinoptilolite due to size exclusion.
Feldman et al, J. Env. Radioact. 2020, 220-221, 106279

Ar3.4A Kr3.6A Xe4.1A Rn4.2 A



Simulation Methods
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Kinetics of gas adsorption (slab models)
Gas adsorption and mobility (bulk zeolites) * MD simulations at 250-350 K.
* 3D periodic boundary conditions. * Flexible zeolite slabs with bulk gas regions.
* LAMMPS code: Grand Canonical Monte Carlo * Separate models for each pore axis.
(GCMC), molecular dynamics (MD), 300 K. * Hydroxyl groups used to maintain Siand O
* Flexible zeolite, force field from Jeffroy et al*2. coordination at the edges.
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6 ‘ Experimental adsorption isotherms, 300 K
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Reduced gas uptake due to
presence of water in pores.

Reverse selectivity (Kr/Xe).

Xe atoms appear to be blocked from entering the clinoptilolite pores.



Simulated adsorption isotherms, mordenite 300 K
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Simulation adsorption isotherms, clinoptilolite 300 K
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9 ‘ MD: large pores in mordenite are accessible to all gases
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10 ‘ MD: access to small pores in clinoptilolite depends on gas size
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11 ‘ Experimental results for gas loading in clinoptilolite

Normalized intensity
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» | Gas loading in small pores: A closer look
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13 ‘ Effect of slab thickness on gas loading in small pores
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14 ‘ Kinetic models for gas loading in clinoptilolite
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Loading / atoms

‘ Kinetic models for gas loading in clinoptilolite

At simulations far from equilibrium, @ and [ are interdependent

M(t) = Mgy + (Myor —

As yt — 0, this approaches the v/t-"law”
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Conclusions
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* Molecular simulations and experiments were performed to investigate gas adsorption and mobility in
zeolites with pores much Iarger than and similar in size to the gas species.

mordenlte clinoptilolite

e Similarity in size between gas species and zeolite pores results in hindered gas mobility. This is seen in
adsorption experiments (reverse selectivity) and MD simulations.

* Simulations over 100-ns time scales revealed trends in gas uptake as functions of size and temperature.

* Fitting with a kinetic model allows the effective gas diffusion coefficient to be calculated.
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Experimental Methods
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Characterization and gas adsorption
* BET surface area (N,, 77 K)
* Pore size distribution (CO,, 273 K)
* Adsorption isotherms
e X-ray diffraction
* Total Gravimetric Analysis

Dynamic gas adsorption analyzer

* Both sample and reference chambers are in
equilibrium with ambient air before injection of
tracers (Kr/Xe/Ar).

* Quadrupole mass spectrometer continuously records
gas concentrations in the reference chamber.

* Samples can be a core plug, rock chips or powders
(natural rock or pure mineral

Butterfly valve

Core Plug\ W Big (2.757)
L Gas ref
chamber chamber :
Small (1.33”)
Sample Tracer gas
Reference chamber P ) 8 ..
chamber concentrations in air
~10% Kr
Big (250 mL) 125 mL ~ 10% Xe
~10% Kr + 10% Xe
Small (65 mL) 125 mL  5.9% Kr + 5.9% Xe + 6.6% Ar




N ‘ Zeolite characterization

Water Content (wt %)

Original state  13.2% 13.5%
100°C,6 hrs  5-8% 5-8%
350°C, 6 hrs <1% <1%

Pore water can be removed with
heating.

Significant pore volume with
pore size less than 4 A which can
not be accessed by Xe.
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‘ MD simulation of gas mobility (bulk zeolites)
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Limited gas mobility due to diffusion barriers at windows.



. ‘ Trends in gas and water mobility (bulk zeolites)

10-ns simulations, similar gas loadings, 300 K
Dry and wet systems
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Significantly greater mobility in 1) mordenite vs clinoptilolite and 2) dry vs wet conditions.
Clinoptilolite: trend of reduced gas mobility with increasing size is consistent with experiment.

Similar water mobility for all gas sizes.
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2 ‘ Effect of slab thickness on gas loading in small pores
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» | Kinetic models for gas loading in clinoptilolite

initial gas Amount adsorbed diffusion D* (A%/ns)

concentration on external surface coefficient T(K) mm

(a7, — o
= 1— [7T
P 1) 1+ @ 1+ @+ @D%

=1
Barrer and Brook, Trans.

Faraday Soc. 1953, 49, 1049 porosity/retardation factor

250 5.5 1.1
300 3.8 1.4
350 34 1.6

i

150

g

loading/atoms

50§

0 10 20 30 40 50 60 70 BO a0 100
| time/ns




