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Abstract

The general unavailability of real international nuclear safeguards data for data science research
and development projects has led many researchers in this domain to turn to synthetic and
simulated datasets to develop and prove modeling concepts. In recent work, Sandia National
Laboratories has developed a large, synthetic, machine learning-validated dataset of images of
containers used to transport and store natural and low-enriched uranium hexafluoride —
specifically 30B and 48-type cylinders. The dataset also includes synthetic images of distractor
objects such as 55-gallon drums and propane tanks. The purpose of these synthetic images is to
address the need for safeguards-relevant data to support computer vision research. In our
validation process, we faced the canonical challenge of generalizing models trained on synthetic
data to make predictions on real-world data. In this paper, we will describe the challenges and
observations from our research training models on synthetic images to make predictions on real-
world images. We will present our priorities in future research directions using our large,
publicly available synthetic image dataset that has the potential to enhance the state of synthetic-
to-real research and development.

Background

In recent years, there has been growing interest in assessing the potential of computer vision
models to detect and categorize images relevant to international nuclear safeguards, including
applications in open-source information collection and analysis (Feldman, et al. 2018) (Gastelum
and Shead 2018), surveillance camera imagery review (Thomas, et al. 2021), and overhead
imagery analysis (Rutkowski, Canty and Nielsen 2018). All of these projects faced challenges
finding and labeling relevant dataset, and significant resources were expended to collect and
label sufficient data. In some cases, costly partnerships with commercial entities were formed to
facilitate access to data.

In response to a growing call for safeguards-relevant images to support development of computer
vision models, our team is developing Limbo: an open-source dataset of one million safeguards-
relevant synthetic images created from 3D computer models of objects in real-world and fully
computer-generated environments, in which we control the virtual materials, conditions, lighting,
position, and cameras. Our data development process is described in (Gastelum, Shead and
Rushdi 2021). The subjects of our data are two types of containers used to store and transport
uranium hexafluoride (UF¢) throughout the commercial nuclear fuel cycle. In particular, we
focus on one 30-inch container design (30B) used to store and transport low enriched (up to five
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percent Uranium-235) uranium (Figure 1), and several 48-type container designs used to store
(48X, 48Y, and 48G) and transport (48X and 48Y) natural and depleted uranium (Figure 2). We
selected these containers based on several desirable characteristics including their unclassified
nature, allowing us to more easily share the data with researchers throughout the safeguards and
computer vision research communities; their ubiquity throughout multiple stages of the nuclear
fuel cycle, making them relevant for a broad set of research projects; their distinct appearances,
allowing us to confirm container identities in real-world images with high certainty; and the
relative availability of real world images with which we could validate our synthetic data.

Figure 1. 30B containers are used to store and transport low-enriched uranium. Credits: Katy
Laffan / IAEA, October 2019, CC BY 2.0 (left); Los Alamos National Laboratory, 2012 (right).

17 av (B
e (e rF
wal V y

Figure 2. 48-inch containers are used to store and transport natural and depleted UF4. Our Limbo
dataset includes three models: the 48Y (left) and 48X are used to store and transport UF, while
48G containers (right) are used exclusively for storage. Credits: IAEA, 2015 (left); United States
Department of Energy, 2016 (right).

Validation

A key step in our data generation workflow is data validation. During data validation, we train
computer vision models using the synthetic data, and test the models on real-world data. We



infer what the models are learning from the synthetic data using a variety of explanatory
techniques applied to their outputs, adjust the content of our synthetic images to address any
shortcomings, and repeat the process.

Our validation workflow is based on two types of computer vision models: first, we use image
classification models, which are trained to predict which class from a set of mutually exclusive
categories most strongly applies to an entire image. In past examples we classified images as
“remote manipulator” or “not” (Figure 3), and in the current work we train classifiers to choose
among classes that include the different types of UF¢ containers (“30B”, “48X”, “48Y”, “48G™)
in addition to distractor classes such as “propane tank”, “55-gallon drum”, “beer keg”, and so on.
Second, we use object detection models, which can identify multiple instances of objects within
a single image, producing a bounding box and predicted class for each instance.

Though the purpose of our current work is not to train computer vision models, the validation
workflow ensures that computer vision models can learn from our data, identifying issues with
the synthetic data in the process. Based on this workflow, along with prior work training models
on synthetic data to test real images previously published in (Gastelum, Shead and Higgins
2020), there are several interesting observations that we believe are relevant for future users of
our data and other synthetic datasets. Those observations are:

1. Image backgrounds have an unexpectedly large impact on model performance.

2. Negative examples are more effective when they include distractors.

3. Object configuration and positioning influence identification.

4. Computer vision models generally are learning the wrong lessons from training data.

Each of these are discussed in detail in the following sections. Note that for all comparisons of
model performance discussed below, we trained two sets of ten models and compared average
performance metrics from each.

Observation 1: Image backgrounds have an unexpectedly large impact on model
performance.

In ground-based visual imagery such as photographs available in open sources, it is common to
think of an image as having a foreground subject (or subjects) and a background. Whether
working with image classifiers or object detectors, it is well known that backgrounds can provide
context that influences model predictions. Depending on circumstance, that influence can be
positive or negative, reinforcing either correct or incorrect predictions. In extreme cases, a model
may make predictions driven almost entirely by the contents of the background, as in the case of
a model that misclassifies dogs as wolves when the background contains snow (Ribeiro, Singh
and Guestrin 2016). To overcome these tendencies, a typical solution is to train with more data,
in the hopes that increased background variance will force models weight foreground features
more heavily for predictions.

Synthetic data provides a powerful tool for exploring the impact of backgrounds on predictions.
As described in (Gastelum, Shead and Higgins 2020), we conducted a series of experiments in
which we trained ResNet image classifiers (He, et al. 2015) using synthetic images of remote



manipulator arms and tested them on real-world images of industrial environments with-and-
without manipulator arms. Each synthetic training image was rendered using a 3D model of a
manipulator arm, in a randomly chosen pose, against a randomly chosen background. In our first
round of experiments, our backgrounds were 360-degree panoramic high dynamic range (HDR)
images of industrial environments. These images provided both the background and the lighting
for the manipulator arm model, leading to extremely realistic shading and perspective. Because
the backgrounds were chosen at random, they were — by definition — decorrelated with the
foreground manipulators, so that they should have had little impact on the trained model results.
Yet when we substituted a set of randomly chosen, non-panoramic background images, also
from industrial environments, also decorrelated, and trained with the same set of foregrounds, the
model accuracy decreased. To reiterate: the foreground manipulators were the same in both
cases, and only the backgrounds changed. This was extremely surprising, and it bears repeating
that — unlike the case of the dogs and snow — the randomly chosen backgrounds in this case
should not have had any impact at all on trained model performance since they were not
correlated with the ground-truth in any way.

We ultimately repeated these experiments with a variety of backgrounds, including blank
backgrounds populated with black, white, the mean color from ImageNet (medium brown), and a
never-repeated low frequency noise texture (see Figure 3). In all cases, training images with
these backgrounds which, again, were completely decorrelated from the foreground ground truth,
produced even lower-performing models.

The takeaway from this is that whether generating synthetic data or curating real-world data, the
choice of backgrounds is extremely important. Sine the goal of our models is to identify objects

of interest that are typically located in the foreground, this raises significant concerns and points
to generally larger problems with computer vision models.

Figure 3. Synthetic remote manipulator arm against real-world industrial 2D images, random
noise, and the mean color results from the ImageNet dataset as backgrounds. Industrial
background image credit: TerraPower.



Observation 2: Negative examples are more effective when they include distractors.

When classifying images as part of our Limbo validation workflow, we trained ResNet-50 (He,
et al. 2015) and Inception V3 (Szegedy, et al. 2015) classification models on synthetic data and
analyzed their predictions on real-world data to identify biases in our synthetic data that might
lead to incorrect predictions. Using explanatory methods, including Integrated Gradients
(Sundararajan, Taly and Yan 2017), Gradient SHAP (Lundberg and Lee 2017), and Occlusion
(Zeiler and Fergus 2013), we used heat map visualizations of individual true-positive and false-
positive predictions made by the models to infer their behavior.

In early experiments, we trained using positive examples of UF¢ containers viewed against real-
world HDR backgrounds, and negative examples with just the backgrounds. Because this
approach did not provide examples of cylindrical objects other than UF, containers, we saw that
the model predictions were being driven by a set of generic cylindrical features, leading them to
misclassify any real-world cylindrical object as a UF4 container.

To address this, we introduced a wide variety of synthetic cylindrical distractors into our
negative examples, including barrels, paint cans, gas cylinders, propane tanks, and water tanks.
Subsequently, we saw large decreases in false positive rates, accompanied by smaller decreases
in true positive rates as the models became more hesitant to classify any cylinder as a UF,
container.

For object detection models including SSD (Liu, et al. 2015) and Faster RCNN (Ren, et al. 2015)
we saw similar results, using the predicted locations of bounding boxes as an indication of
features upon which the model was basing its prediction. From these experiments we noticed that
we were missing one significant class of object that was present in our real-world data but not in
our synthetic data: human beings, which were often incorrectly identified as UF¢ containers!

The takeaway here is that whether generating synthetic data or curating real world data, the
choice of distractors is extremely important; this also points to deeper problems with computer
vision models, since it is impossible to generate or locate examples of every possible distractor.

Observation 3: Object configuration and positioning influence identification.

Using the same Limbo data validation workflow described above, we trained image
classification models on either individual containers, individual distractors, or blank
backgrounds, and tested the models on our real-world data. Using the explainability methods
described above, we found that when evaluating real world images of UF¢ cylinders organized in
rows, the first few cylinders in a row contributed all of the salience for predictions, while the
partially occluded containers in the remainder of the row contributed none. We saw similar
behavior using the object detection models. Based on this observation, we generated new
synthetic images in which our UF¢ containers appear in rows (see Error! Reference source not
found.), and we are currently developing synthetic images that we hope will improve object
detection performance in highly complex scenes.

However, like observation 2, the positioning and configuration of both relevant objects and
distractors appears important whether generating synthetic data or curating real world data; yet it



is impossible to generate or locate examples of containers in every possible permutation of
configuration or placement. Since a human with no prior training can generalize understanding
from one individual container to two containers side-by-side, this is another example of
limitations in computer vision models.

Observation 4: Computer vision models generally are learning the wrong lessons from
training data.

In addition to the above, we have frequently observed that humans have no difficulty recognizing
the subject(s) of our synthetic images. Anecdotally, people often assume that our synthetic
images are real, see Figure 4. This is in stark contrast with the models, where training with
synthetic data typically imposes a performance penalty when evaluating real images. This
implies that the trained models are overly discriminating, making decisions based on features
that humans are either unaware of or ignoring.

Machine learning researchers - particularly those who enjoy the luxury of easily obtainable data -
might argue that this is simply because synthetic data isn’t drawn from the same distribution as
real data. While this is technically true — the synthetic data is not drawn from the same
distribution — it ignores the larger problem that computer vision models and human are either
using different features to make decisions, weighting those features differently, or some
combination of the two, The rarity of real-world data for use in research and development on
international nuclear safeguards problems compels us to approach the problem from a different
perspective, to develop models to generalize better and behave more like people in their
predictions.

Figure 4. Human observers have no difficulty recognizing synthetic UF4 containers as UF,
containers, and in some cases cannot tell whether the images are synthetic or not. The image on the
left is a real-world image (Credit IAEA via Flickr, 2020), and the image on the right contains
synthetic containers against a real-world background.



Research Priorities

Our future research priorities are based upon the observation that computer vision models are
learning the wrong features from training data. We see that computer vision models are overly
influenced by image backgrounds, the presence and identity of distractors, and the placement and
configuration of relevant and distractor containers. In each of these cases, what appear to be
irrelevant differences in synthetic images are straining the performance of computer vision
models when making inferences on real-world data.

Rather than considering these issues to be criticisms of synthetic data, we view them as research
opportunities for the computer vision community. When people can make correct predictions
from data and models cannot, we argue that the models are the problem, not the data. More
pointedly, we believe that the computer vision community has been a victim of its own success —
spectacular early improvements in model performance, driven by the development of CNNss, has
stifled research into alternative features and decision-making, leading to the fastidiousness of
current models. We do not believe that deeper networks or more elaborate training schedules,
designed to extricate a few fractions of a percent in performance on popular sample datasets, are
likely to overcome these limitations.

In large commercial applications, the supply of imagery is abundant and the consequences for
missed detections are minor. Given the scarcity of real international safeguards data that can be
used for research and development and the high consequences for missed indicators of nuclear
proliferation activity, it is essential that we develop computer vision models that can make robust
predictions from either very limited numbers of real training exemplars (in the single digits), or
larger quantities of synthetic data. We challenge the computer vision research community — in
collaboration with international nuclear safeguards and other nuclear nonproliferation experts —
to reexamine basic assumptions about how to create robust computer vision models that can help
ensure that global nuclear activities remain peaceful in use.
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