

Study of Avalanche Behavior in 3 kV GaN Vertical P-N Diode Under UIS Stress for Edge-termination Optimization

Bhawani Shankar, Zhengliang Bian, Ke Zeng, Chuanzhe Meng, Rafael Perez Martinez, Srabanti Chowdhury

Electrical Engineering,
Stanford University,
Stanford, CA, USA, 94305
bhawani@stanford.edu

Brendan Gunning, Jack Flicker, Andrew Binder, Jeramy Ray Dickerson, Robert Kaplar

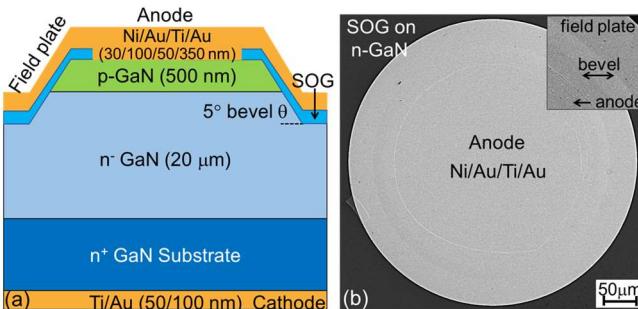
Sandia National Labs,
Albuquerque, NM, USA, 87123

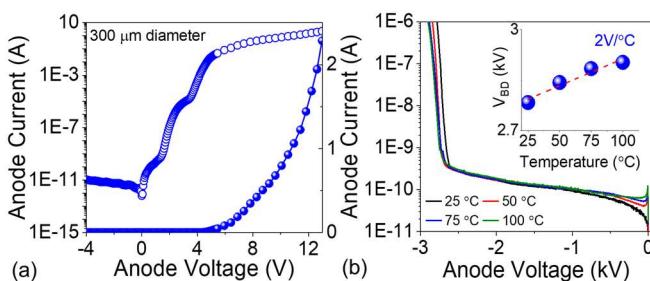
Abstract— This work investigates both avalanche behavior and failure mechanism of 3 kV GaN-on-GaN vertical P-N diodes, that were fabricated and later tested under unclamped inductive switching (UIS) stress. The goal of this study is to use the particular avalanche characteristics and the failure mechanism to identify issues with the field termination and then provide feedback to improve the device design. DC breakdown is measured at the different temperatures to confirm the avalanche breakdown. Diode's avalanche robustness is measured on-wafer using a UIS test set-up which was integrated with a wafer chuck and CCD camera. Post failure analysis of the diode is done using SEM and optical microscopy to gain insight into the device failure physics.

Index Terms-- *Gallium Nitride, GaN, Reliability, Vertical PN Diode, Avalanche, Robustness, Unclamped Inductive Switching.*

I. INTRODUCTION

GaN-based power semiconductor devices promise superior switching performance and higher power efficiency than the Si, and possibly SiC-based power devices [1], [2]. Particularly, GaN-based vertical semiconductor devices are an attractive choice for the power electronic applications, as they can handle higher current density and offer better thermal management, and area efficiency [3], [4]. Hence, there is a growing interest in GaN-based vertical power devices and their robustness under circuit-level stress conditions. Semiconductor devices in the power electronic converters, usually experience a voltage overshoot in the off state due to a series line or load inductor and they may fail if not robust [5]-[7]. Hence, ruggedness in the device's breakdown is very critical for the power switching applications [6], [7]. Fortunately, the intrinsic P-N junction in GaN-based vertical devices possesses an avalanche capability and offers robustness against breakdown [4], [8]-[10]. GaN-based vertical P-N diodes with avalanche breakdown voltage


up to ~ 5 kV under DC condition, are already reported in the literature [9]. However, most of these works are limited to studying positive temperature coefficient of device's breakdown voltage to confirm presence of avalanche. Very few studies discuss device's avalanche robustness under circuit conditions [10], [11]. Non-uniform or unstable avalanche severely hampers the device's reliability and can limit its safe operation [12]. Therefore, it is crucial to achieve a robust avalanche. Robustness in avalanche is determined by how uniformly the device avalanches during breakdown. A uniform field distribution is indispensable to achieve uniform avalanche. Therefore, an effective edge termination [13]-[15] and optimized doping [15] are very crucial to achieve uniform field distribution hence, avalanche uniformity in a device. Recently, we reported repeatable avalanche in a bevel terminated GaN-based vertical P-N diode, achieved by optimizing the p-type doping and bevel angle [15]. The 1.3 kV rated GaN diode demonstrated a uniform avalanche under the inductive switching stress [11]. The bevel terminated diode sustained more than 5000 UIS stress pulses before facing thermal failure. This study advances our previous work [15], where a field plate is also added to the GaN-based P-N diode besides the 5° bevel, to improve the avalanche breakdown voltage. In this report, we extended our evaluation to study the avalanche behavior and robustness of 3 kV GaN-on-GaN vertical P-N diode, fabricated in-house, under repetitive UIS stress and probe the diode's failure mechanism. This manuscript is structured as follows. Diode design, and its DC characteristics are presented in Section II. Experimental setup for the on-wafer avalanche characterization, is described in section III and the results from the diode's avalanche characterization are discussed. Physical insights into the diode's degradation during avalanche are derived and a failure mechanism is proposed in Section IV. Finally, conclusive remarks are drawn in Section V.


Sandia National Laboratories is managed and operated by NTESS under DOE NNSA contract DE-NA0003525. We are thankful for ONR grant N0014-21-1-2167-NA (Mr. Lynn Petersen) and ARPA-E (Dr. Isik C. Kizilyalli).

II. DEVICE DESIGN AND DC CHARACTERISTICS

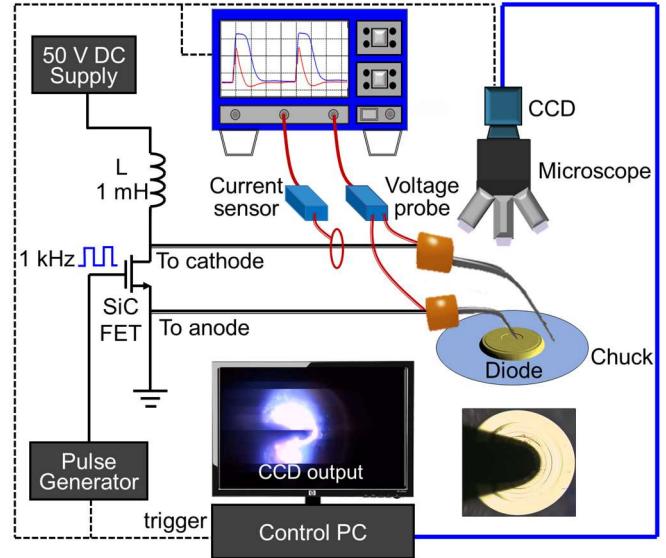

Circular P-N diodes of 300 μm anode diameter were fabricated on a GaN epi-stack, which was realized on a highly doped 2-inch n⁺ GaN substrate, using MOCVD. Figure 1(a) shows the device schematic depicting different layers of the device stack. A 20 μm n-drift region is grown with Si-doping of 6-9E15 cm^{-3} , followed by a 500 nm thin p-GaN layer with 5E17 cm^{-3} Mg doping to form the P-N junction. Ni/Au/Ti/Au metal stack was used as anode on top while Ti/Au stack is used as cathode on backside. All devices possess field plate with 5° bevel at anode for edge termination. 300 nm thick spin-on-glass (SOG) was used as the field plate dielectric and for surface passivation. Figure 1(b) shows the top view SEM image of the fabricated diode with the bevel and field plate termination as shown in the figure inset. DC characterization of the diodes was done using Keysight's B1505A power device analyzer. Figure 2(a) shows the I-V characteristics of the diode. Pulse I-V characterisation was done in the forward mode for the current above 100 mA. The particular diode studied offered a turn-on voltage of around 4 V as seen in Fig. 2(a). This is due to an extra voltage drop at the p-type contact. The diode showed an ON-current of up to 2.2 A at 13 V and a remarkably low reverse leakage of 10 pA. The reverse breakdown voltage of the diode was measured at different temperatures as shown

Figure 1. (a) Cross-sectional schematic of 3 kV GaN vertical P-N diode depicting different layers of the device stack. (b) Top view SEM image of diode, with magnified view of field plate and bevel shown in the inset.

Figure 2. (a) I-V characteristics of 3 kV GaN-based vertical P-N diode. (b) Reverse breakdown voltage (V_{BD}) of diode measured at different temperatures. Inset shows V_{BD} increases with temperature exhibiting a positive temperature coefficient which confirms presence of avalanche breakdown.

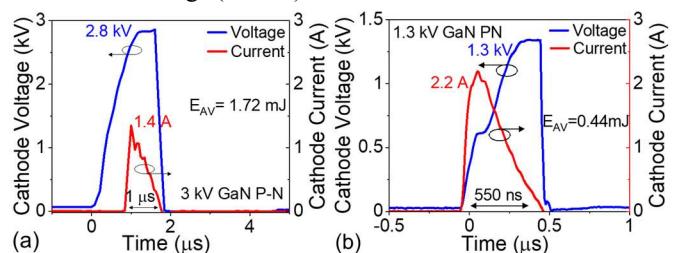
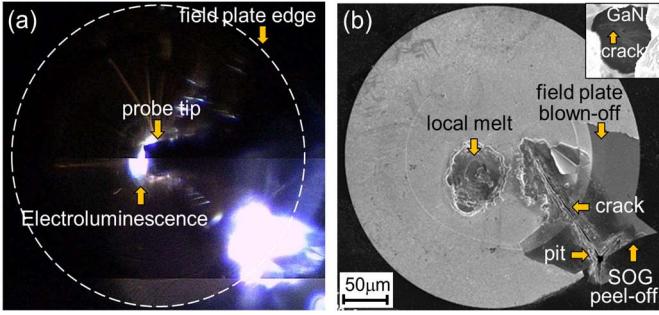


Figure 3. Experimental set-up with integrated CCD for on-wafer UIS testing and avalanche study in GaN-based vertical P-N diode. The diode is probed on chuck using thick needle probes and connected in antiparallel to the MOSFET.

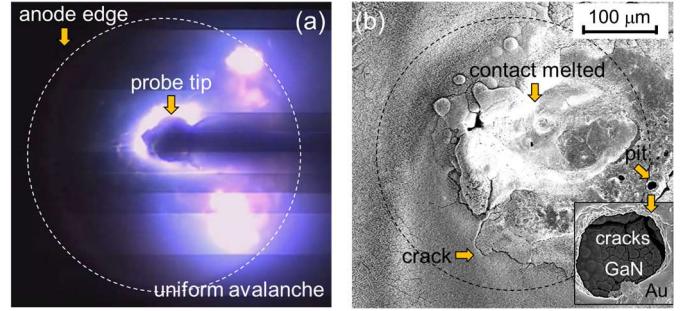

in the Fig. 2(b). Fluorinert was used during the breakdown measurements and the current compliance was set to 1 μA . The diode showed a reverse breakdown voltage (V_{BD}) of ~ 2.8 kV@1 μA with a positive temperature coefficient of 2 V/°C, as depicted in inset of Fig. 2(b), confirming the presence of the avalanche breakdown.

III. AVALANCHE CHARACTERIZATION

As, discussed above, the diode shows the avalanche breakdown. Next, the uniformity and ruggedness of the avalanche is evaluated. The avalanche behavior of diode is investigated under an inductive switching stress. Here, the avalanche characterization is done at the wafer-level, on a prober, for a quick estimation of the avalanche robustness of the fabricated diodes to provide quick feedback to the design/fabrication team. For this, an unclamped inductive switching (UIS) test circuit is integrated with wafer chuck under a high-speed CCD camera as shown in Fig. 3. The diode under test, is probed on the chuck using thick needle probes and connected in antiparallel to a SiC MOSFET, which has a higher breakdown voltage (3.3 kV) than the diode itself. The MOSFET

Figure 4. (a) Cathode voltage and current waveforms recorded in (a) 3 kV GaN vertical P-N diode and (b) 1.3 kV GaN vertical P-N diode, in a UIS cycle [11].

Figure 5. (a) Optical image of 3 kV GaN vertical P-N diode captured during the avalanche in the UIS test circuit. (b) Post failure SEM image of 3 kV GaN vertical P-N diode shows evidence of field dominated failure. A closer look at the pit reveals cracks in underlying GaN layer, as shown in the inset.


is turned on to energize the inductor and later it is turned off to interrupt the current flowing through it. Interruption to the inductor current generates a voltage overshoot at the diode's cathode terminal which pushes the diode into the avalanche. Cathode voltage and current waveforms are recorded using a high bandwidth voltage and current probes, respectively, on a Tektronix Mixed Signal Oscilloscope. During the avalanche breakdown, the cathode voltage clamps to 2.9 kV, and a peak current of 1.4 A flows through the GaN diode for a duration of $t_{AV} = 1 \mu\text{s}$ as shown in the Fig. 4a. The avalanche robustness (E_{AV}) is determined using the following relation.

$$E_{AV} = \int_0^{t_{AV}} V \times I \, dt$$

The diode shows avalanche robustness of $E_{AV} = 1.72 \text{ mJ/pulse}$. In contrast, a bevel terminated 1.3 kV GaN vertical P-N diode without field plate, avalanched at 1.3 kV with a higher current of 2.2 A flowing through the diode, for a duration, $t_{AV} = 550 \text{ ns}$ as seen in the Fig. 4(b) [11]. The higher current in the 1.3 kV diode resulted from diode's uniform avalanche behavior which possibly distributed the generated heat and associated thermal stress uniformly across the device. On the other hand, the 3 kV diode showed lower current (1.4 A) which can be attributed to non-uniform avalanche as discussed in next section. Uniform avalanche is a sign of superior edge termination which was achieved in the 1.3 kV diode. While the 3 kV diode although demonstrated avalanche, based on the positive temperature coefficient of breakdown, the UIS stress test indicates that the avalanche was not uniform.

IV. DEGRADATION DURING AVALANCHE

To gain physical insight into the device breakdown, optical images of the GaN diode were captured using the high-speed CCD, during the UIS test. Figure 5(a) shows an optical image of the 3 kV GaN vertical P-N diode captured during the avalanche in the UIS test. The diode undergoes a non-uniform avalanche as evident from the localized electroluminescence (EL) seen in the anode center and at the anode edge. Post failure, a SEM image of the diode is taken as shown in Fig. 5(b). It shows that the contact metal melted, and got removed from

Figure 6. (a) Optical image of 1.3 kV GaN P-N diode exhibiting uniform avalanche operation under UIS stress [11]. (b) SEM image of 1.3 kV GaN vertical diode which failed after uniform avalanche [11]. Pit revealed cracks in underlying GaN as seen in the inset.

the anode center, which earlier showed EL and a massive pit and crack developed at the anode edge. Localized metal melting indicates a localized heating [16]-[18]. A part of the field plate and SOG was also peeled off. Material layers (here metal and SOG) peel-off under mechanical stress [19]-[24]. A closer look inside the pit unveiled cracks in the underlying GaN layer as well, as shown in the inset of Fig. 5(b). Cracks and pits in GaN are strong signature of field driven failure mechanism i.e., inverse piezoelectric effect [25]-[29]. Whereas the 3 kV GaN P-N diode showed more localized EL and avalanche, the 1.3 kV diode showed a more uniform avalanche as shown in Fig. 6(a) [11]. As evident, most of the anode contact region including the edges, showed EL. The 1.3 kV diode failed after 5000 UIS pulses and Fig. 6(b) shows its post-failure SEM image. As seen, most of the anode contact melted uniformly due to the intense heat and developed multiple cracks and pits all over the contact region due to the associated thermal stress [11].

Based on the above observations, the following failure mechanism is proposed for 3 kV GaN P-N diode; thermal stress during avalanche expands SOG more due to its higher coefficient of thermal expansion (CTE) than the underlying GaN layer [30]. Consequently, this peels off the SOG and damages the field plate lying on top of it as seen in Fig. 5(b). Once a portion of the field plate is blown-off, the peak field returns from the bulk to the anode edge. The peak field at the anode edge enhances piezoelectric tensile strain in the underlying GaN layer which develops cracks/ pits, eventually causing failure in 3 kV GaN diode.

V. CONCLUSION

Avalanche behavior of our in-house fabricated 3 kV GaN-on-GaN vertical P-N diode was studied. Reverse breakdown voltage showed a positive temperature coefficient, confirming avalanche. Under UIS stress the diodes avalanched at 2.9 kV with 1.4 A of peak current, with an energy of 1.72 mJ/pulse. Localized EL was seen at the anode center and its edge. Thermal stress damaged the SOG & field plate followed by piezoelectric strain-induced cracking in GaN eventually failed the diode. This study shows how the UIS stress test and EL features can be used to determine the efficacy of edge termination.

REFERENCES

[1] Meneghesso, G.; Meneghini, M.; Zanoni, E. Gallium Nitride-Enabled High Frequency and High Efficiency Power Conversion; Springer: New York, NY, USA, 2018. Available : <https://doi.org/10.1007/978-3-319-77994-2>

[2] B. Shankar, A. Soni, S. D. Gupta and M. Shrivastava, "Safe Operating Area (SOA) Reliability of Polarization Super Junction (PSJ) GaN FETs," 2018 IEEE International Reliability Physics Symposium (IRPS), 2018, pp. 4E.3-1. Available: <https://doi.org/10.1109/IRPS.2018.8353595>

[3] D. Ji, S. Li, B. Ercan, C. Ren and S. Chowdhury, "Design and Fabrication of Ion-Implanted Moat Etch Termination Resulting in $0.7 \text{ m}\Omega \text{ cm}^2 / 1500 \text{ V}$ GaN Diodes," in *IEEE Electron Device Letters*, vol. 41, no. 2, pp. 264, Feb. 2020. Available: <https://doi.org/10.1109/LED.2019.2960349>.

[4] I. C. Kizilyalli, A. P. Edwards, H. Nie, D. Disney and D. Bour, "High Voltage Vertical GaN p-n Diodes With Avalanche Capability," in *IEEE Transactions on Electron Devices*, vol. 60, no. 10, pp. 3067-3070, Oct. 2013. Available: <https://doi.org/10.1109/TED.2013.2266664>

[5] Bhawani Shankar, "Safe Operating Area Reliability of AlGaN/GaN High Electron Mobility Transistors (HEMTs)," Ph.D dissertation, Dept. Electronic Sys. Eng., Indian Institute of Science, Bangalore, Karnataka, India, 2019. [Online]. Available: <https://etd.iisc.ac.in/handle/2005/4606>

[6] S. R. Bahl, D. Ruiz and D. S. Lee, "Product-level Reliability of GaN Devices," 2016 IEEE International Reliability Physics Symposium (IRPS), 2016, pp. 4A-3-1-4A-3-6. Available: <https://doi.org/10.1109/IRPS.2016.7574528>

[7] B. Shankar et al., "Time Dependent Early breakdown of AlGaN/GaN Epi Stacks and Shift in SOA Boundary of HEMTs Under Fast Cyclic Transient Stress," 2018 IEEE International Electron Devices Meeting (IEDM), 2018, pp. 34.6.1-34.6.4. Available: <https://doi.org/10.1109/IEDM.2018.8614690>

[8] O. Aktas and I. C. Kizilyalli, "Avalanche Capability of Vertical GaN p-n Junctions on Bulk GaN Substrates," in *IEEE Electron Device Letters*, vol. 36, no. 9, pp. 890-892, Sept. 2015. [Online]. Available: <https://doi.org/10.1109/LED.2015.2456914>

[9] H. Ohta, N. Asai, F. Horikiri, Y. Narita, T. Yoshida and T. Mishima, "Two-Step Mesa Structure GaN p-n Diodes With Low ON-Resistance, High Breakdown Voltage, and Excellent Avalanche Capabilities," in *IEEE Electron Device Letters*, vol. 41, no. 1, pp. 123-126, Jan. 2020. [Online]. Available: <https://doi.org/10.1109/LED.2019.2955720>

[10] Isik C. Kizilyalli, P. Bui-Quang, D. Disney, H. Bhatia and Ozgur Aktas, "Reliability Studies of Vertical GaN Devices Based on bulk GaN Substrates", *Microelectronics Reliability*, vol. 55, no. 9, pp. 1654-1661, 2015. Available: <https://doi.org/10.1016/j.microrel.2015.07.012>

[11] B. Shankar, K. Zeng, B. Gunning, K. J. Lee, R. P. Martinez, C. Meng, X. Y. Zhou, J. Flicker, A. Binder, J. R. Dickerson, R. Kaplar and S. Chowdhury, "On-Wafer Investigation of Avalanche Robustness in 1.3 kV GaN-on-GaN P-N Diode Under Unclamped Inductive Switching Stress," 2021 IEEE 8th Workshop on Wide Bandgap Power Devices and Applications (WiPDA), 2021, pp. 40-43, Available: <https://doi.org/10.1109/WiPDA49284.2021.9645154>

[12] B. Shankar, A. Soni, H. Chandrasekar, S. Raghavan and M. Shrivastava, "First Observations on the Trap-Induced Avalanche Instability and Safe Operating Area Concerns in AlGaN/GaN HEMTs," in *IEEE Transactions on Electron Devices*, vol. 66, no. 8, pp. 3433-3440, Aug. 2019. Available: <https://doi.org/10.1109/TED.2019.2919491>

[13] Zhengliang Bian, Ke Zeng, and Srabanti Chowdhury, "2.8 kV Avalanche in Vertical GaN PN Diode Utilizing Field Plate on Hydrogen Passivated P-layer," in *IEEE Electron Device Letters*, 2022, Available: <https://doi.org/10.1109/LED.2022.3149748>

[14] Bhawani Shankar, Sanjeev K. Gupta, William R. Taube & J. Akhtar "High-k Dielectrics based Field Plate Edge Termination Engineering in 4H-SiC Schottky Diode," *International Journal of Electronics*, vol. 103, no. 12, pp. 2064-2074, 2016. Available: <https://doi.org/10.1080/00207217.2016.1178340>

[15] K. Zeng, S. Chowdhury, B. Gunning, R. Kaplar and T. Anderson, "Study on Avalanche Uniformity in 1.2 kV GaN Vertical PIN Diode with Bevel Edge-Termination," 2021 IEEE International Reliability Physics Symposium (IRPS), 2021, pp. 1-4. [Online]. Available: <https://doi.org/10.1109/IRPS46558.2021.9405165>

[16] B. Shankar and M. Shrivastava, "Safe Operating Area of Polarization Super-junction GaN HEMTs and Diodes," in *IEEE Transactions on Electron Devices*, vol. 66, no. 10, pp. 4140-4147, Oct. 2019. Available: <https://doi.org/10.1109/TED.2019.2933362>

[17] B. Shankar, S. Raghavan and M. Shrivastava, "Distinct Failure Modes of AlGaN/GaN HEMTs Under ESD Conditions," in *IEEE Transactions on Electron Devices*, vol. 67, no. 4, pp. 1567-1574, April 2020. Available: <https://doi.org/10.1109/TED.2020.2974508>

[18] B. Shankar, A. Soni and M. Shrivastava, "Electro-Thermo-Mechanical Reliability of Recessed Barrier AlGaN/GaN Schottky Diodes Under Pulse Switching Conditions," in *IEEE Transactions on Electron Devices*, vol. 67, no. 5, pp. 2044-2051, May 2020. Available: <https://doi.org/10.1109/TED.2020.2981568>

[19] Meneghesso, G., Meneghini, M., Tazzoli, A., Ronchi, N., Stocco, A., Chini, A., & Zanoni, E., "Reliability Issues of Gallium Nitride High Electron Mobility Transistors," *International Journal of Microwave and Wireless Technologies*, vol. 2, no. 1, pp. 39-50, 2010. Available: <https://doi.org/10.1017/S1759078710000097>

[20] B. Shankar, R. Sengupta, S. D. Gupta, A. Soni, N. Mohan, N. Bhat, S. Raghavan and M. Shrivastava, "On the ESD behavior of AlGaN/GaN Schottky Diodes and Trap Assisted Failure Mechanism," 2017 39th Electrical Overstress/Electrostatic Discharge Symposium, 2017, pp. 1-6. Available: <https://doi.org/10.23919/EOESD.2017.8073423>

[21] B. Shankar et al., "Time Dependent Shift in SOA Boundary and Early Breakdown of Epi-Stack in AlGaN/ GaN HEMTs Under Fast Cyclic Transient Stress," in *IEEE Transactions on Device and Materials Reliability*, vol. 20, no. 3, pp. 562-569, Sept. 2020. Available: <https://doi.org/10.1109/TDMR.2020.3007128>

[22] A. Sarua, Hangfeng Ji, M. Kuball, et al., "Piezoelectric Strain in AlGaN/GaN Heterostructure Field-effect Transistors under Bias", *Appl. Phys. Lett.*, vol. 88, no. 10, pp. 103502, 2006. Available: <https://doi.org/10.1063/1.2182011>

[23] B. Shankar et al., "Trap Assisted Stress Induced ESD Reliability of GaN Schottky Diodes," 2018 40th Electrical Overstress/Electrostatic Discharge Symposium (EOS/ESD), 2018, pp. 1-6, Available: <https://doi.org/10.23919/EOS/ESD.2018.8509745>

[24] Matteo Meneghini, Carlo De Santi, Idriss Abid, Matteo Buffolo, Marcello Cioni, Riyaz Abdul Khadar, Luca Nela, Nicolò Zagni, Alessandro Chini, Farid Medjdoub, Gaudenzio Meneghesso, Giovanni Verzellesi, Enrico Zanoni, and Elison Matioli , "GaN-based Power Devices: Physics, Reliability, and Perspectives", *Journal of Applied Physics*, vol. 130, pp. 181101, 2021, Available: <https://doi.org/10.1063/5.0061354>

[25] B. Shankar, S. D. Gupta, A. Soni, S. Raghavan and M. Shrivastava, "ESD Behavior of AlGaN/GaN Schottky Diodes," in *IEEE Transactions on Device and Materials Reliability*, vol. 19, no. 2, pp. 437-444, June 2019. Available: <https://doi.org/10.1109/TDMR.2019.2916846>

[26] B. Shankar and M. Shrivastava, "Unique ESD Behavior and Failure Modes of AlGaN/GaN HEMTs," 2016 IEEE International Reliability Physics Symposium (IRPS), 2016, pp. EL-7-1-EL-7-5. Available: <https://doi.org/10.1109/IRPS.2016.7574608>

[27] J. Joh and J. A. del Alamo, "Critical Voltage for Electrical Degradation of GaN High-Electron Mobility Transistors," in *IEEE Electron Device Letters*, vol. 29, no. 4, pp. 287-289, April 2008. Available: <https://doi.org/10.1109/LED.2008.917815>

[28] B. Shankar, A. Soni, S. Raghavan and M. Shrivastava, "Trap-Assisted and Stress Induced Safe Operating Area Limits of AlGaN/GaN HEMTs," in *IEEE Transactions on Device and Materials Reliability*, vol. 20, no. 4, pp. 767, Dec. 2020. Available: <https://doi.org/10.1109/TDMR.2020.3033522>

[29] B. Shankar, S. Raghavan and M. Shrivastava, "ESD Reliability of AlGaN/GaN HEMT Technology," in *IEEE Transactions on Electron Devices*, vol. 66, no. 9, pp. 3756-3763, Sept. 2019. Available: <https://doi.org/10.1109/TED.2019.2926781>

[30] R. Peterson, "Literature Review of Spin On Glass", Los Alamos National Laboratory, Los Alamos, NM, Tec. Rep. LA-UR-16-21332, 2016. Available:<https://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-16-21332>