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2 I Motivation
« With EMPIRE, we care about high energy plasmas involving
electrons in strong EM fields.

« Charged particles can attain relativistic speeds, but they still
collide with slow neutrals.

 Where standard DSMC works at lower energies, we need a
relativistic algorithm (that still works for non-relativistic cases).

* Also relevant for astrophysical flows, like galaxy collisions.



3 1 Why Is This Hard?

 Numerical issues arise that aren’t a problem for analytic physics,
especially when we want to be accurate for bothv ~cand v ~ 0.

* Non-obvious “gotchas” can trip up a DSMC expert who isn’t very
familiar with special relativity.

 There’s no “cookbook” for implementing relativistic DSMC,
although several people have shown results.



+ I Special Relativity

« SR says light moves at speed c (~3e8 m/s) in every reference
frame.

« Everything else pretty much follows from that.
« Under SR we have to modify our understanding of kinetic theory,

and the algorithms we use to model it - DSMC as usually
implemented is going to have no problem allowing speeds >c.



s 1 Notation

We want to think in terms of the Lorentz factor:
1

J1—1v2/c?

y:

This lets us define a proper velocity: u = yv
...and we can write:

y =+J1+u2/c?



s I Numerical Issues

Let’s say that we want to compute the kinetic energy of a slow
object (m=1, v=10) with a relativistic-safe algorithm.

1

Remember: y = e E, = (y — 1)mc?

z/cz ’

In python | get y=1.0000000000000007, E;, = 59.95204332975845
This isn’t just %mvz =50

The problem is that the computer does finite precision arithmetic and so
my ¥ — 1 only has one significant figure.



7z I Numerical Issues

We have to rewrite:

1 2
E. =(y—1)mc? = —1 2 =
k=0 —1mc (\/1—v2/c2 )mc (1_”_2+\/1_v2/62>m

CZ
Now python gives E;, = 50.00000000000004

We can also see from this how it reduces to the classical expression
at low speeds.



¢ I A Relativistic Collision

Classically, we perform a collision by finding v, and v,. and rotating
v,- about v, according to a scattering probability distribution.

In principle we can still do this, but it’s awkward. When we collide
two particles with proper velocities u = (1e10 + 1e9,0,0) they can
scatter like this while conserving momentum and energy:
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9 I A Relativistic Collision

The most convenient way to do this is to find ucy and then shift the
particle velocities to that frame.

mquq -+ m-u,

VUcMm =
yimq +y,m;
myu; + myu,
UcMm = 2
Ecu/c

We can shift a proper velocity u by a proper velocity w like this:

zl(u-W)—Yu)

'uLEBw=11L+w(yW
w



0 I Collision Rate
nlnzvra

We’re going to keep o as-is, as a function of E;, (though you still
need to be using the right cross-section!)

nyn,v, is tricky. We know that SR does weird things with clocks and
distances, but can’t we just do this from our perspective in the lab?

We need a quantity that is Lorentz invariant. It turns out (Moller
1945) that if you use:

v, = (01 — 13)? — (v X1,)?/c?

you get the correct Lorentz-invariant collision rate.



11 1 Relativistic DSMC

* Get a number of selections from the density and (v,.6),,4«

7 1<
w2
v

* Pick two random particles. PG

Jcﬁ‘“& e
7Y =

» The probability that they collide is v,.6/(v;0)max

If they collide:

« Transform to the CM frame

« Randomly rotate u, and then apply it back to the particles

 Transform back to the lab frame



12 I Relativistic Equilibrium

Maxwell-Juttner is the relativistic equivalent of the Maxwell-
Boltzmann distribution:

_ 1 (@) kT
f(p) = T 0K, (1/6) exp( Z ) , where § = —

As before, this should be the distribution that yields detailed balance
for any reasonable collision model.

Because E = ymc?, it has the same property as Maxwell-Boltzmann
that f(u,)f (uz) = h(E)



i3 I Maxwell Molecules

Because these 3D velocity distributions are spherically symmetric, it’s
convenient to instead look at distributions of energy or speed.
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14 I Maxwell Molecules

To make things easy on myself, | said that every pair of particles was
equally likely to collide.

Oref

These are Maxwell molecules, o = -
T

, sO that v,.o = gf.

The problem was that there’s no a(E.,) that can do this

1

relativistically. Classically it’s possible because E.y, = > UvE.

Instead define a Maxwell-like cross-section as:
Jref

2
—F

0'=



15 1 Detailed Balance
There are a few ways to think about what’s going wrong here.

Peano et al. (2009) encountered a similar issue and ascribed it to the
need for the collision rate to be a Lorentz invariant.

But also we are restricted to functional forms for the cross-section
that can possibly satisfy detailed balance at equilibrium.

Under SR an iso-energy contour is an ellipsoid, not a sphere. This
implies that v.o cannot be equal for pre-collision and post-collision
velocities. And so a constant value can’t give detailed balance.



16 I Relativistic Equilibrium @

When my collision probability was wrong, | didn’t get the right

equilibrium because | didn’t have detailed balance in an M-J distribution.
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17 | Beam Simulations
We use this algorithm in all of our collisional simulations now.

We’ve been comparing and getting good agreement with Cesta’s hybrid
GALZEL code (see forthcoming paper from Brandon Medina).

One case Brandon has run is a 0.5 MeV electron beam into 0.1 mbar
argon. These electrons are relativistic - about 2.5 x10% m/s. If
interpreted classically this energy would give a speed > c.
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20 I Conclusion
 EMPIRE has a single code path that efficiently performs collisions
from low to relativistic energies.

 There are a number of “gotchas” to watch out for when
implementing such a scheme.

 The conference paper will aim to be a cookbook for implementing
the algorithm.



21

Questions
?




2 I Temperature

Classically, you can get temperature from particle kinetic energy as:
muv?

T =
3k

There’s not one uncontroversial way to get a relativistic temperature,
but with the definition of temperature from the Hamiltonian you can
get:
myv?
T = 4
3kg

This works well to parameterize the M-J distribution, but note that
it’s not proportional to kinetic energy and can change as a
distribution changes shape.



23 | Equilibrium

If there are no/weak external forces, if you let a cloud of particles
collide with itself long enough, you get a Maxwell-Boltzmann

distribution:

3 T 3.;2 B 'i-ml.l2 3
f(v) d’v = (ZWkT) e %T d’v,
This the distribution that yields detailed balance for collisions where
o(E) and scattering is symmetric, where N(v{,v, —= v3,v,) =
N3, vy = v1,7;)

The joint pdf of a pair of velocities is just a function of the total
kinetic energy:

f(wy)f (wy) = h(vf + v3)



24 | Detailed Balance
For elastic collisions we can write f(u,)f(u,) = f(u'y)f (u'y)

Detailed balance requires:

fu)f (uy)(weo)du = f(u'y)f (u'y)(v.0) du’

When velocities scatter about a sphere, we don’t have to worry about
the stretching of du. But under SR velocities scatter on an ellipsoid.

fu)f(uy) = f(u'y)f(u',), so v.o can’t be constant. The Moller flux
factor in v, suffices to account for the stretching of velocity space, so
o rather than v,.o should be constant for collisions at some energy.

That is, o0 = o(E), where E is not a function of v,



