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;s 1 We Use the Schwarz Method ...

AS A
PRECONDITIONER
FOR THE LINEARIZED
SYSTEM

AS A SOLVER FOR
THE COUPLED
FULLY NONLINEAR
PROBLEM




+ 1 The Original Schwarz Method

= Proposed in 1870 by H. Schwarz for solving Laplace PDE on irregular domains.

Crux of Method: if the solution is known in regularly shaped domains, use
those as pieces to iteratively build a solution for the more complex domain.

Q,

T Basic Schwarz Algorithm
Initialize:

= Solve PDE by any method on Q, w/ initial guess for Dirichlet BCs on T,.

Iterate until convergence:

= Solve PDE by any method (can be different than for Q,) on Q, w/ Dirichlet BCs
on I', that are the values just obtained for Q,.

= Solve PDE by any method (can be different than for Q,) on Q, w/ Dirichlet BCs
on I', that are the values just obtained for Q..

= Schwarz alternating method most commonly used as a preconditioner for
Krylov iterative methods to solve linear algebraic equations.

Novel idea: using the Schwarz alternating as a solution method
for solving multiscale partial differential equations (PDEs).



s | Schwarz with and without Overlap

« Schwarz with overlap
* The original Schwarz method
« Simple transmission with Dirichlet BCs
* Requires overlap for convergence
« Amount of overlap affects convergence

97

« Schwarz without overlap
« Does not require overlap
« Requires Dirichlet-Neumann or Robin BCs
« It does not converge using D-D BCs 2 r
« But D-D works in contact!

(29

o)



s | The Schwarz Method for Dynamics

Time
= |n the literature the Schwarz method is I o 12
applied to dynamics by using space-time T 1
discretizations. aamenid J
11—
G—Q—O 1]
Pro ©: Can use non-matching 8 ] b
meshes and time-steps (see right ﬁI I ’
figure). IR
(2‘—_._. & &
Con ®: Unfeasible given the design Ll space
of our current codes and size of *‘;;l T .
simulations. |
Overlapping non-matching meshes
and time steps in dynamics. I



7 1 Algorithm for Dynamics and Schwarz Contact

Controller time stepper: defines global ATs
at which subdomains are synchronized

0, Q, 0,
I Ll I ! I b I .--. Controller time stepper
fo h 2 & Can use different integrators
| | | | | | |- Time integrator for O with different time steps
£1,0 t11 t12 t13 t1,4 t15 f16 within each domain!
Time integrator for (),

tho ta tp b3 ta tas te a7 g 29



¢ | Algorithm for Schwarz Contact

L T ' Tq |
Controller time stepper
| | |
T I I Time integrator for £,
| | |
0, I I I I Time integrator for 2,
| | |

Step 0: Initialize i = 0 (controller time index).

Step 1: Advance (), solution from time T; to time T;,4 using time-stepper in {}; with
time-step At4, using solution in (), interpolated to I" to apply a DBC or NBC.

Step 2: Advance (), solution from time T; to time T4 using time-stepper in (), with
time-step At,, using solution in (), interpolated to I" to apply a DBC or NBC.

Step 3: Check for convergence at time T; ;.
» If unconverged, return to Step 1.
» If converged, seti = i + 1 and return to Step 1.



Potential Energy: T(¢) /pgcp @ dV,

I
o | Formulation of the Solid Mechanics Problem @!
Kinetic Energy: V(o) := th(F, Z) dV — /Opr-cp dV—/E;TQT-cp ds, ‘

Lagrangian: L(p,¢) :=T(¢) — V(p),

Action functional: S[g] := /IL(cp,c,b) dt. |
DivP +pgB =ppp in QXxI,

Euler-Lagrange e(X,ty) =x¢ in Q, I

Equations: P(X, tg) =vg in Q, |
(p(X,f)=X on B(PQXL I

PN =T on opQ)XxI. I



Indicator function for admissible set: I (p) = {0, if p €C,

I
0 | Traditional Formulation of the Contact Problem m
oo, ifp &C, ‘

Augmented potential energy with contact constraint :

V() :=[ﬂA(F,Z) dV—fnpUB-cp dV—I—ntC(cp) dv— [ T-gds.
T |

« The contact constraint is enforced strictly or approximately.
« Lagrange multiplier methods enforce it strictly. |

« Penalty methods enforce it approximately. |



.+ 1 Schwarz Formulation of the Contact Problem

DivP(") + poyB = oo™, in 01 X I,
(p(ﬂ) (Xr t) — X on agvﬂl X Ikr
oM (X,t) = Pa,,r[e" VY (1)), on I' x I,
PN = T, on [9p0) UT] x I,
I DivP(") 4 poB = 00", in Oy x I,
eM(X,t) = X on [9,0 UT] x L,
o PN = T, on oy x I,
PN = Po,5r[T™(Q1, k)], on [' X I,
* This is the D-N variant of the method, known to converge. tp(”)(X,fk) = :B?), in ()
. 0.
- The D-D, N-N method does not converge in theory. oM (X, ) = Yk ), in 0, |

« But this variant works for contact.



I
12 | Schwarz Algorithm for Contact m

1 k<0 Ln<1
2: repeat > controller time stepper 2: repeat b SChWﬂFZ loop
3 Check contact criteria &> defined in Section 3.1 3 forifromlto2do > subdomain loop
4 if contact detected then 4 e (O, 1) w.i(cl} > position IC
5: (0, t) + solution of Algorithm 2in Q) x I; > contact enforcement s S (Q, 1) 'vf} > velocity IC
6: else _ fi—1th first subd .
7: (Q), t) < solution of (9) in () x [, > no contact o e > subdomain
8 endﬁf o ' 7: ™ (3, I) « x > regular Dirichlet BC
o ke k41 8 e"(T, Iy) « Pﬂz_}r[qo(”‘” (), I)] > Schwarz Diricl}let BC
10: untilk = N > N is the total number of steps i PN + T on [aT[_—ll UT] x I > regular traction BC
10: ¢(0)4, I}) + solution of (14) > solve dynamic problem in )y x I
Algorithm 1: Full simulation workflow with Schwarz-based contact enforcement for the 11: else b second subdomain
specific case of two subdomains. 12: 0" ([0 UT], I) + x > regular Dirichlet BC
13: PN « T ondpQy x I &> regular traction BC
14: PN « Po,r [T(“} (O, )] > Schwarz traction BC
. . 15: ©(0y, Iy) + solution of (15) &> solve dynamic problem in (); x I
Contact criteria: 16: end if
17: end for
. . . 18: n<n+1
« Overlap: interpenetration of subdomains 19: until converged
. . o . Algorithm 2: The Schwarz alternating method for contact enforcement during a con-
° compre55|0n. Positive normal traction troller time interval Iy for the specific case of two subdomains.

- Persistence: Was in contact previous step |



Position and
velocity of left
contact point:

Impact &
release times:

(y) Ui Uz (%y)

F—

()

|
|
I
\II \ll \I.’ \I
Bl 4

I
- | A Canonical 1D Problem - 2 Colliding Elastic Bars m

Gl f' | 71

L g§ & L

(—g+uvo(t—t), t< timp, (vg, t< timp,
x(t) =<0, timp < t < tel, 0(t) = {0, timp < t < thel,
\ —U[)(f _ tre])»r t > trelr L — 00, t > trel;

Contact force: feontact = Vo\/ EpA, I

timp = to + Ui[}! trel = timp +2LV %r



2 | Comparison of Results

 Analytic solution

« Lagrange multiplier method with implicit time integration

« Lagrange multiplier method with explicit time integration

« Penalty method with implicit time integration

« Penalty method with explicit time integration

 ScC
 Sc
 ScC

nwarz met

Nwarz met

nwarz met

nod wit

nod wit

nod wit

n implicit-implicit integration

N implicit-explicit time integration

N explicit-explicit time integration




15 | Contact Point Position

x 107
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16 | Mass-Averaged Velocity
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17

Kinetic Energy
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18 | Potential Energy
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19 | Total Energy

=10
ot R
2T Total Energy Relative Error (2,)
25 0.02 T T
at
.35 0 ——
4% o 2 o s o 8 -0.02 F
2
T -0.04 -
g
z
L .006
= | |
-0.08 - \ /7 Implicit LM
Explicit LM
Explicit Penalty
o1l Implicit Penalty
' Implicit-lImplicit Schwarz
Implicit-Explicit Schwarz
012 , , Explicit-Explicit Schwarz
-2 0 2 4 6 8

time %10



20 | Contact Force

contact point force

Contact Point Force (2 1)
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| Contact Velocity

Contact Point Velocity {91}
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22 | Mitigation of Chatter




>3 1 Conclusions and Future Work

» Schwarz contact works surprisingly well
* Very promising results
«  Warrants extension to 2D and 3D

» Use specialized integrators for traditional methods

« Very recent chatter mitigation

 Investigate implications of DD-NN variants




