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Electro-thermal co-design of
UWBG electronics



From an electrical point of view, UWBG semiconductors can

revolutionize high-power electronic device technologies
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Bandgap, Eg (eV) 1.12 1.43 3.26 3.42 5.61 4.8 5.47
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However, UWBG materials will not surpass the WBG Figure-

of-Merit without overcoming thermal reliability concerns
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Electro-thermal co-design techniques are necessary to

overcome device overheating concerns

Thermo-physical property measurement
» Laser-based pump-probe techniques

Electro-thermal device modeling
 Thermal/electronic transport 4 |
« Energy conversion (heat generation) . . i‘ : q
 Electrical output characteristics =
- Device self-heating behavior ¥ i < J| simuiation

Device thermal imaging
« Sub-um resolution optical thermography techniques

Device-level thermal management —
« Low thermal resistance composite substrate ———
* High thermal conductivity passivation overlayer N
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The current state-of-the-art and
need for a new technique
compatible with UWBG devices



Why optical methods? - Non-invasive and non-contact
measurement, high spatial resolution

S. Choi, C. D. Nordquist et al., IEEE TCPMT (2016)
2 mm DOI: 10.1109/TCPMT.2016.2541615
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Current state-of-the-art optical methods for device

thermal imaging
J. Lundh, S. Choi et al., ASME JEP (2020), DOI: https://doi.org/10.1115/1.4047100

Raman thermography
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Limitations associated with using existing methods for the @
b g

channel temperature measurement of UWBG transistors

« UWBG materials are transparent to visible wavelength light

« Deep UV lasers induce unacceptably high photocurrent that alters the device |-V

characteristics and damages the device
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Temperature mapping of a Ga,O; MODFET using

nanomaterial-assisted Raman thermometry techniques
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The motivation of this work is to get rid of the use of surface
temperature transducers that contaminate the device surface b 10

2D material-assisted Raman
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Measurement schematic
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DUV thermoreflectance imaging system
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Subcontinuum thermal transport effects caused by small dimensions of

the heat source that are amplified under high electric field conditions

Heat source size effects

—Joule heating concentration
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Comparison with NUV TTl measurement results
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.. Maximum Lateral Spatial | Lateral Spatial | Penetration Penetration
Illumination . . . . .
Wavelensth Probing Resolution Resolution Depth in Depth in

g Bandgap Energy (NA=0.42) (NA=0.75) GaN Al;Ga;, )N
Visible (530 nm) 23eV ~0.63 um ~0.35 um N/A N/A
Near-UV (365 nm) 3.4elV ~0.44 um ~0.24 um ~5() nm N/A
Deep-UV (265 nm) 4.7 eV ~0.32 um ~0.18 um ~27 nm ~32 nm

DUV thermoreflectance imaging:

UWBG AlGaN-channel HEMT



Surface temperature measurement of an

Al 45Gag 55N/AlG 30Ga, ;N HEMT
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Validation of the results using nanoparticle-assisted Raman

thermometry by testing a TLM structure
50X DUV TTl images, Thorlabs LMUL-50X-UVB, NA = 0.42
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Impact of DUV illumination on the device electrical output
characteristics
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