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pIRP: A Probabilistic Tool for Long-Term
Integrated Resource Planning of Power Systems

Abstract—The penetration of renewable energy resources
(RER) and energy storage systems (ESS) into the power grid has
been accelerated in recent times due to the aggressive emission
and RER penetration targets. The Integrated resource planning
(IRP) framework can help in ensuring long-term resource ade-
quacy while satisfying RER integration and emission reduction
targets in a cost-effective and reliable manner. In this paper,
we present pIRP (probabilistic Integrated Resource Planning),
an open-source Python-based software tool designed for optimal
portfolio planning for an RER and ESS rich future grid and
for addressing the capacity expansion problem. The pIRP tool’s
ESS and RER modeling capabilities along with its enhanced
uncertainty handling make it one of the more advanced non-
commercial IRP tools available currently. Additionally, the tool is
equipped with an intuitive graphical user interface and expansive
plotting capabilities. Impacts of uncertainties in the system are
captured using Monte Carlo simulations and lets the users
analyze hundreds of scenarios with detailed scenario reports. A
linear programming based architecture is adopted which ensures
sufficiently fast solution time while considering hundreds of
scenarios and characterizing profile risks with varying levels of
RER and ESS penetration levels. Results for a test case using
data from parts of the Eastern Interconnection are provided in
this paper to demonstrate the capabilities offered by the tool.

Index Terms—Capacity expansion planning, energy storage, in-
tegrated resource planning, renewable energy, resource adequacy

I. INTRODUCTION

It is well known that the integration of renewable energy
resources (RER) and energy storage systems (ESS) into the
power grid has gained great momentum in recent times,
primarily due to climate change. The characteristics of RER
and ESS are different from conventional sources of power, like
synchronous generators, due to their variability and intermit-
tency. Hence, specialized power system planning frameworks
and tools are required as increasing volumes of RER and ESS
are integrated into the grid. Integrated resource planning (IRP)
is a class of problems that deal with efficient and economical
long term integration of such resources into the grid, while
ensuring emission targets set by regulatory authorities are
satisfied.

While IRPs and the traditional capacity expansion planning
frameworks both aim to ensure long-term resource adequacy,
the latter typically resorts to deterministic approaches for
allocating sufficient generation to meet the peak load forecasts.
Such methods are not effective in the handling multiple
sources of uncertainties, characterizing risks and ensuring
reliability with RER-rich portfolios. In addition, with increased
RER in the grid, risks of resource unavailability over longer
periods raises resilience concerns. The aforementioned re-
silience and reliability concerns can be alleviated with the
help of enhanced ESS modeling and uncertainty handling, thus
paving the way for the development of new tools. This paper

presents one such tool, the probabilistic integrated resource
planning (pIRP) software, that utilizes a stochastic framework
for optimal portfolio planning for a future grid dominated by
RER and ESS.

A. Literature Review

Several tools exist today for the purpose of IRP. The
most relevant tools are discussed here for the purpose of
comparison with the pIRP software. Calliope [1] is an open-
source Python based software that is designed to analyze
energy systems with high shares of renewable energy. This
software offers flexibility in modeling a range of spatial
and temporal resolutions and has a detailed ESS modeling
capability. However, this tool does not consider uncertainties
in renewable generation, load or other system variables, which
is a critical aspect of the future power grid integrated with high
volumes of RER. In addition, this tool is designed as a Python
package and does not offer a graphical user interface (GUI),
which limits the usage of this software to Python-users. The
European Electricity Market Model (EMMA) [2] is a techno-
economic model of the integrated European power system
developed using the General Algebraic Modeling Software
(GAMS). It estimates the future capacity-mix of a system
along with hourly prices, generation, storage dispatch, and
cross-border trade. This tool is primarily built for the European
electricity markets and is not suitable for universal power
system modeling. Also, it is a fully deterministic model and
has limited ESS modeling capabilities. Switch 2.0 [3] is a
Python-based tool for planning transitions to low-emission
electric power systems which can be used for IRP, research,
and economic, technical and policy analysis. Its capabilities in-
clude modeling multiple investment steps over several decades
and sequential modeling of individual hours of operation.
However, like most existing IRP tools, it does not have a GUI
and also does not consider uncertainties. CapacityExpansion
[4] is an IRP tool developed as a Julia package. This tool
has the distinctive feature of using a clustering algorithm
for identifying similar time-series data. The disadvantages of
this tool include the absence of a GUI, ignoring uncertainties
of the system, and the lack of result visualization options.
The Renewable Energy Deployment System (ReEDS) is a
long-term expansion planning model developed in GAMS
by the National Renewable Energy Laboratory (NREL) [5].
This model is capable of modeling several utility scale ESS
technologies including pumped storage hydro, lithium ion
batteries, and compressed air energy storage. Although this
model is capable of handling several future scenarios, there are
limitations in the process to set up and analyze the scenarios
and in the range of uncertainties that can be modeled [6]. The
Renewable Integration Solutions model (RESOLVE) is a long-
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term power system planning model developed by Energy and
Environmental Economics, Inc. [7]. RESOLVE is a Python-
based model that seeks to address RER integration challenges
in the planning process and optimizes investments and oper-
ational costs for the California Independent System Operator.
The model has desirable features such as modeling energy
storage, assessing flexible loads, and selecting and weighting
representative days for operational modeling. Limitations of
the model include lack of a GUI and test cases.GenX [8] is
a Julia-based capacity expansion planning model which offers
extensive flexibility in temporal and spatial modeling for IRP
purposes. However, GenX assumes perfect information and
foresight of the decision-maker, which does not capture the
effects of uncertainty and forecast error in grid operations.
Besides the open-source tool described above, several com-
mercial tools exists, such as Plexos and Encompass.

B. Contributions

The pIRP tool contributes new features, modeling capa-
bilities, and computation efficiencies over the existing IRP
tools. It comes with an intuitive GUI, which is not available
in most of the existing open-source tools. Users can input
their own data related to RER profiles using the interactive
GUI and commonly used file types. It also offers extensive
data visualization options, some of which are presented later
in the paper. In terms of modeling capabilities, some of
the key contributions of pIRP include flexible options for
modeling different ESS technologies, and long and short
duration ESS. ESS capacities and durations are considered as
decision variables in the optimization framework and hence
the ESS requirements are co-optimized with the other re-
sources, unlike most existing tools. A resilience constraint is
also included in the model, which considers temporary (e.g.
multi-day) loss of resources in the planning horizon. Impacts
of uncertainty are captured through Monte Carlo simulation
(MCS) techniques and Latin Hypercube sampling (LHS) [9].
Users can also activate or deactivate specific sets of constraints
depending on the type of the planning problem. In terms of
computational efficiency, pIRP offers sufficiently fast solution
time even when considering numerous scenarios due to its
linear optimization framework. This allows the user to simulate
hundreds of scenarios for a twenty year problem within a few
hours (e.g. five zone model with about a hundred resources in
less than two hours).

C. Organization

Section II provides a brief summary of the optimization
framework developed in pIRP and describes the objective
function and key constraints. Section III describes the tool
architecture and highlights the features and workflow. Section
IV demonstrates the efficacy of the pIRP software, where it
is used to optimally select a portfolio of traditional resources,
RER and ESS for a five-zone model, considering resilience
and reliability constraints. Section V presents some concluding
remarks.

II. PROBLEM FORMULATION

The core of the pIRP tool builds upon foundations similar to
the ones used in typical generation and transmission capacity
expansion planning problems [10]. Since this paper focuses
on tool architecture and applications, a concise description of
the core formulation is presented below. The key parameters
and variables are presented in Tables I and II, respectively.

TABLE I
KEY PIRP PARAMETERS

Nres number of resources

TNyears number of planning years
Nperiods ~ humber of periods per year
Nzones number of zones
Nlines number of tie-lines

TABLE 11
KEY PIRP VARIABLES

C Capacity

R Resource retirements

A Resource additions

P Power dispatch

F Inter-tie flows

w Tie-line capacity

T  Transmission hosting limit
D Distribution hosting limit

A. Objective Function

The objective function of the pIRP, as presented in (1),
seeks to minimize the sum of the following cost components:
(i) fixed O&M cost (FOM), (ii) installed cost (IC), (iii) tie-
expansion cost (TC), (iv) transmission hosting cost (THC),
(v) distribution hosting cost (DHC) and (vi) production cost,
consisting of variable O&M (VOM) and fuel cost (FC).

min Cost = FOM+IC+TC+THC+DHC+VOM+FC (1)

B. Constraints

Capacity addition and retirement: Constraints on capacity, ad-
dition and retirements need to be considered for the generating
resources. Capacity build-out constraints include restrictions
on maximum capacity and the build-out rate. Also, constraints
ensure that for a particular resource, the tool cannot retire more
than the existing capacity.

Power dispatch: The dispatch from each resource is restricted
by its maximum capacity. For power balance, the sum of zonal
generation and imports/ exports over tie-lines must equal zonal
demand.

Tie-lie limits: Each physical tie line is modeled in pIRP as two
unidirectional flows. Tie-line flows between zones are limited
by maximum tie-line capacities and expansion limits set per
year.

Renewable profiles and zonal requirements: For renewable
resources, the predicted yearly RER forecasts are taken as
inputs. Power dispatch for each resource is restricted by the
potential maximum production.



Local capacity requirements (LCR): The sum of capacities
(adjusted by capacity credits) of available resources must be
greater than the product of the maximum demand and the local
generation requirement (e.g., 30%).
T&D hosting capacity: T&D hosting capacity constraints
ensure that the hosting capacities respect the build-out rates
and the maximum allowed capacities in each zone.
Reserve allocation: The sum of capacities (adjusted by capac-
ity credits) of available resources must be greater than the sum
of the maximum demand and a pre-specified headroom (e.g.,
10%).
Ramping flexibility: The ramping capability is represented as
a fraction of the maximum capacity of the resource. The
aggregate ramping capability (obtained by applying capacity
factor and average dispatch) from dispatchable resources must
be greater than the aggregate ramp from RER and ESS.
Energy storage constraints: State of charge (SOC) and
charge/discharge constraints for ESS are considered.
Resilience: Supply interruptions are modeled using this con-
straint. Loss of one or more resources might lead to an energy
deficit in a particular zone. When such an event occurs, the
resilience constraint helps in finding the set of resources which
are not at risk and also the possible energy deficit values.
Constraints are enforced in each zone to compensate for the
energy deficit using the resources which are not at risk.

In addition to the constraints mentioned above, maximum
allowable limits can be set for dispatch from RER.

III. TOOL ARCHITECTURE

The pIRP tool comprises three main components: (a) A
model file in a Microsoft Excel worksheet (.xIsx file), (b) the
core engine written in Python and (c) a GUI, also written in
Python. The required data and parameters can be provided
using the model file. The model file is then loaded using the
GUI The main GUI page with an example model is shown in
Figure 1. The GUI allows making adjustments to model pa-
rameters, solver options, and load and RER profiles. When all
necessary adjustments are completed, the core engine, which
uses the Pyomo package [11] for modeling the optimization
framework, is used to solve the IRP problem. Reports and
plots are then generated through the GUI for visualization of
the results.

It should be noted that while the tool requires 8760-
hour load and RER profiles as inputs, the 8760 hours are
partitioned by the tool into representative “time buckets” for
faster execution time. The time buckets are characterized by
seasons (winter, spring, summer and fall), day/night, week-
day/weekend and peak/off-peak. The hours of the day are
then mapped into the appropriate time buckets. For example,
January 10, 2021 evening 7-9 pm is characterized as a winter-
weekday-night-peak. The tool offers flexibility in how the user
can construct the time buckets. A base construct is provided
in the model file, which the users can use as a reference for
creating their own time buckets.

Adjust Model Parameters Type Scenario Neme

Adjust Solver Parameters

IRP Profile Shaping Module

Scenario Report

ComEd

MAAC RTO DEOK

Fig. 1. pIRP main GUI with an example model (logos and affiliations have
been greyed out for the peer-review phase).

A. RER profile handling

The tool allows the users to import their own load, wind and
solar profiles using .csv files. Separate profiles can be imported
for each zone. New profiles can also be generated by applying
random swapping, regression or averaging techniques on the
imported profiles.

B. Scenario generation using uncertainty

The pIRP tool stands out from other existing IRP tools due
to its ability to generate multiple scenarios by considering
the stochastic behavior of certain system variables. Fuel cost,
load and RER profiles, capacity credits of RER, and zonal
loads can be represented by random variables. These random
variables can follow Normal, Uniform, LogNormal, or Weibull
distributions, as deemed fit by the user. The users also have the
options of providing certain parameters of the distributions as
inputs, e.g., mean, variance, min, and max. Table III provides
an example of an uncertainty table that the user can modify
using the model file.

TABLE III
UNCERTAINTY MODEL INPUTS
Variable Identifier Distribution
Peak load ComEd Normal
Profile Solar Normal
Profile Wind Weibull
Capacity credit Solar Normal
Fuel cost Coal, Nuclear logNormal

C. Optimization Module

The pIRP core engine offers several options to the users
in terms of solvers and problem parameters through the GUI.
A number of solvers like GLPK, Gurobi, and others can be
selected depending on the user’s preferences. The user can
choose which constraints they want to activate. The number
of scenarios for the MCS can also be selected by the user. A
series of optimization problems are solved sequentially after
the parameter selection process is completed.



D. Outputs

A wide range of zonal and system-wide plots illustrating
installed capacities of different generating resources, RER and
ESS additions, retirements of fossil fuel units, inter-tie flows,
and other variables for the planning horizon are available
through the GUI once the solution process is complete. If a
user performs MCS, a dashboard with histograms of results
are also shown. The GUI provides a solution report which
can be used to display results from a current or saved case
study. This is available in a table format and can be exported
to EXCEL. Users also have the option to view the back-end
data consisting of .csv and .npz files for customized analysis.

E. Applications

The pIRP tool can be used to typically solve the following
problems: (a) capacity expansion planning, (b) reliability and
resilience planning under uncertainties, and (c) optimal invest-
ments in short, medium and long duration storage alternatives.

IV. CASE STUDIES AND RESULTS

A modified PIM system consisting of the following five
zones, as shown in Figure 1, is considered: ComEd, RTO,
DEOK, MAAC and EMAAC [12]. The generation, tie-line and
load information for the system have been simplified to attain a
tractable yet representative model. The resource types include
gas turbines (combined cycle, combustion turbine), coal power
plant, nuclear power plant, biomass, geothermal, utility-scale
solar PV, distributed solar PV, wind farm, hydroelectric plants,
fuel cells, demand response, energy efficiency and ESS. ESS
types include 1-, 2-, 5-, and 10-hour duration batteries, referred
to as ESS-1, ESS-2, ESS-5 and ESS-10, respectively in the
tool. Four bi-directional tie-lines have been considered, i.e.,
ComEd-RTO, RTO-DEOK, RTO-MAAC, MAAC-EMAAC.
The peak load for the overall system is assumed to be at 161.3
GW in Year 2022 and a 1% load growth is assumed for all
zones during each year of the 20-year planning horizon (2023-
2042). For more details, readers can refer to the GitHub page
for pIRP [13], where the tool will be hosted.

TABLE IV
RESILIENCE - SUPPLY RISKS
Zone Resource 1 | Resource 2 | Interruption
ComEd Wind Solar 3 days
ComEd Hydro Solar 5 days
RTO Solar 2 days

Case Studies: Two cases are studied to demonstrate the
efficacy of the tool: the base case and an MCS case with
25 scenarios. For the base case, a target of 75% RER for the
ComEd and EMAAC zones and 50% for the RTO, MAAC,
and DEOK zones is set for the year 2042. Supply risks are
considered for different zones and resources, as summarized
in Table IV. Resilience constraints are activated to ensure
resources are allocated accordingly.
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otalInstalled Renewable Capacity in T

250 Biomass
Geothermal
USolar
DSolar
Wind

DR

EE

ESS-1
ESS-2
ESS-5

200 -

-
I
o

x 1,000MW

-
1)
5]

50 -

8 9 10 11 12 13 14 15 16 17 18 19
earY

Fig. 3. System-wide renewable capacity by year.
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Fig. 4. System-wide storage capacity by year.

Results: The base case was solved using Gurobi in ~2.5
minutes and using GLPK in ~7 minutes. Results show the
levelized cost of electricity (LCOE) value to be $37.8/MWh
and ESS capacity addition in total for the overall system to be
21.1 GW. The yearly installations for different resources are
shown in Figure 2. Figure 3 shows the yearly RER capacities.
It should be noted that installed capacities for both wind and
solar have grown significantly to meet the target penetration
levels. Figure 4 shows the yearly installed ESS capacities and
it can be observed from the figure that ESS-1 and ESS-10
were primarily selected by the tool along with a negligible
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Fig. 5. MCS results - histograms of peak load, renewable capacity, energy storage capacity and LCOE.

portion of ESS-5. ESS-1 was chosen during the initial years
to support reliability and ramping constraints. In years 14 and
beyond, the tool preferred investments in ESS-5 and ESS-10
since with increasing RER penetration, supply risk resilience
constraints need to be satisfied with sufficient long duration
storage. ESS-1 resources were eventually retired due to the
asset-life constraints and presence of longer duration storage.

Next, the MCS study was performed using 25 samples with
parameter values related to profiles, peak load, capacity credit
and fuel costs generated using LHS. Histograms in Fig. 5 show
that depending on the peak load and renewable uncertainty
scenarios, the required storage and LCOEs can vary over
a wide range. Finally, the resource dispatches can also be
analyzed by samples and zones (e.g. Fig. 6).
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V. CONCLUSIONS

In this paper, the pIRP tool, a freely available Python-
based software designed for optimal portfolio planning for an
RER- and ESS-rich future grid, has been presented. Compared
to existing open-source IRP tools, key advantages of pIRP
include its enhanced uncertainty handling, intuitive GUI and
result visualization. In terms of modeling, some of the key
contributions of pIRP include flexible options for modeling
different ESS technologies (short, medium and long duration
ESS), and inclusion of resilience constraints, which considers
temporary loss of resources within the planning horizon.
Uncertainty models can be considered for a diverse range of

system parameters and studied using MCS and LHS. Two case
studies have been presented to demonstrate the key features
and performance of the software.
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