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Challenges for wide bandgap power devices

Baliga FOM for power devices
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=  WBG materials such as GaN improve Si/SiC power devices
from material properties
= Utilize material properties to enhance performance

Specific on-resistance (m{ cm

BFOM = emnEcrit3 10°F -
c-BN
= Vertical architectures for high-power applications 19" i
Diamond
= Challenges to design must be addressed before 10° | s
implementation 10° 10° 10° 10°
Breakdown voltage (V)

= p-dopant activation
= Mitigation of sidewall damage
= Improved gate dielectric interface G

[1]1Tsao et al,, "Ultrawide-bandgap semiconductors: research opportunities and
challenges," Advanced Electronic Materials, 2018.

Example of vertical device structure
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= Si0, most commonly used for MOSFET gates
= Other materials may be preferred with larger k and

breakdown

= ALD preferred to other deposition techniques
= Conformal coatings

= High aspect ratio
= Low temperature deposition

= Properties vary with thickness and deposition methods

/" Dielectric material properties directly related to device performance

Breakdown
. Dielectric Bandgap Strength
e constant (eV) (MV/cm)
Si0, 3.9 88 7.5
Si;N, 7.5 5.3 1.9
AlLO, 9.8 9 8.2
Zr0, 25 5.8 0.4
HfO, 25 58 5.6
La,0, 30 5.8 135
Ta,0, 46 4.4 3.5
TiO, 80 3.5 0.3
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[2 ] Asubar, et al., "Controlling surface/interface states in GaN-based transistors:
Surface model, insulated gate, and surface passivation,” Journal of Applied ‘

Physics, 2021.




P Defects at interface reduce device functionality

dangling bonds
Optimization of interface crucial to device periodicity oot} surface
performance e SR W T— e
= Reduce threshold voltage, leakage, and D;; N
. Ga
: tall Bloch stat
= Surface/interface states add excess charges Seriodioity b
= Additional available states in energy bands
= Reduced gate control, decreases carrier mobility, and
Increases Ry, inuloed g, ant e esshaton ool ofAnpl hysics. 2001
= Trapped charges cause large Vy, fluctuation
= Previous work on D,;/leakage reduction ce (k) _2 mmminkee =
= Chemical surface treatments o e 7
= 1 1 =
= Post deposition anneals (PDAs) to dielectric 4 ,{\gap states derived from §*°°f i iy -7
# “conduction band < V' /]
bandgap :*—branch point o Y | 1
: /gap states derived from 3, ‘ it ‘ / e on
valence band —— 27— azos |
L 3 : == = Al203 PDA
10 ; : : HfO2
10’ ]Il l[ 77777 — —HfOZPDA“|
Ev (k) ° ' ’Applied Field (MV/em)

[3] Glaser et al., "Analysis of ALD Dielectric Leakage in Bulk GaN MOS
Devices, WiPDA, 2021.




P Routine D analysis is difficult for wide-bandgap materials

= High-Low AN MM MM LA

= Conventional high-frequency CV measurements —Cjws
underestimates D,; in wide bandgap ~ highy ggy—low-yy
semiconductor conductance—y
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= Conductance = Z | ]
= Despite its accuracy, the conductance technique m"'E i
is often time consuming and impractical for RG]
routine device analysis ”E 10 L
_____________________ 0 -
I C-¥, : = - conventiohal
' = Avrelatively simple and fast technique ' et i high-low )
I = Shown to account for fast interface traps and | S —
| reports accurate interface trap distributions I 0.2 0.3 0.4 0.5

L ———————————————————— J EC -ET (eV)

[4] Yoshioka et al.,"Accurate evaluation of interface state density in SiC metal-oxide-semiconductor
structures using surface potential based on depletion capacitance,” Journal of Applied Physics, 2012.




v

Steps in C-W, method analysis

QS CV Measurements 5 < 10% 1000 Interface States
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Comparing Theoretical

Quasi-Static : Determine Surface ——) & Experimental ——) D Extraction

C-V Measurements Potential Constant Depletion Capacitance

ro - “ ' 1 — I o 2¢5 (dC Ictionj Dir {CD } C['I')Qs CD.lhcur}-
Ys(Va) = [(1 — Cos/Cox)dVe + A (Cp + Crr) Ci-p SesiceNp P T = =

Expected values for D,

= Si-1e'%cm?

= SiC-1e'-1e’2cm?

=  GaN - 1e'?-1e'3cm~?(not commonly reported)




C-V Characteristics used in C-W¥, analysis

Capacitance [F]

FB Capacitance

c2Trapped

Low Freq. - Forward
Low Freq. - Reverse
m= High Freq. - Forward
--uu.|dea|

® FlatBand

Gate Voltage [V]
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/d Methods for device fabrication

Samples prepared on n-type GaN
= Ng=1.6x10"® cm-3drift

= Common surface cleans to substrate
=  100:1 HF

= 4:1 Piranha at 80 °C

Ti/Al

= ALD deposition
=  50-nm SiO, and Al,O5 at 200 °C

= Backside ICP etch using RF bias 125W/10W
= @Gas flow - BCl;/Cl/Ar (15 min)

= Lithography pattern of 500 um devices
= Ni/Au top contacts = i
[5] Monsma et al.,"Savannah ALD Systems:

u T|/A| ba C kS | d e CO nta Ct Enabling Quick Results," ECS Transac tions, 2007.

= PDAs 700 °C - 850 °C to simulate ohmic contact anneals




/" Reduction in SiO, Capacitance related to dielectric constant
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/" PDAs more significant than surface cleans for reducing D; for SiO,

DIT SiO,/GaN 4:1 Piranha PDA
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= Post deposition anneals at 850 °C show significant improvement to D;
= Similar trend shown regardless of surface treatment




P High temperature PDA improve SiO, breakdown and leakage

Breakdown trends SiO,/GaN 4:1

= SjO, dielectrics show max breakdown near Piranha and 100:1 HF PDA_

6 I\/IV/cm 1073 _
= Solid - 4:1 Piranha !
= Dashed - 100:1 HF <
£ 107 7
o
= Relative improvements to leakage currents 5
and breakdown strength at 850°C PDA g 10°° _
= Varying surface treatments show little effect on >
breakdown or leakage < i
3 10-12
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/7 Al,O3 dielectrics highly dependent on ALD quality

Shelf observed for all Al,O; CV curves
= Associated with mid-gap trap states

= Reduced with higher temperature PDAs

700 and 750°C PDAs exhibit reduced CV
characteristics
= Oxide capacitance at lower PDA temps €4;203 = 7.5

Theoretical 5,0, = 9.8

800 and 850°C PDAs improve dielectric constant
Data more consistent with theoretical capacitance
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400 T

320 F ——750C

CV Characteristics Al,0;/GaN 4:1 Piranha PDA

e —700C

. ——3800C '\
240 - 8500 Does not reach
- :;;(:;iap trap deep accumulation
160 |
80 F

1 ' L 1 2 1 L 1 1 1 L L

-15 -10 -5 0 5
Gate Voltage [V]




// Ellipsometry data shows changes in Al,O; films

,/ AL, O; Ellipsometry data vs. PDA temperature
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= Temperature-induced crystallization/densification
= Large increase for PDA temperatures above 800 °C

= Data shows change to physical and optical properties
= Results in non-real results using C-W, method




Anomalies in Al,O; CV data make accurate D,y analysis difficult

o DIT Al,O,/GaN 4:1 Piranha PDA
Changes to CV characteristics make accurate D, S B A B
analysis difficult
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700 °C and 750 °C results may not be accurate

due to the presence of mid-gap states

= Shelf of high density of monoenergetic trap states
reduces accuracy of analysis

800 and 850°C device D7 is not possible

-

o
—
N

Interface Trap Density [cm'z]

= Devices do not reach stable accumulation capacitance 11 —700C
10 —750C
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/" PDA and surface cleans do not significantly impact Al,O; breakdown
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/ ] Breakdown trends Al,0,/GaN 4:1 Piranha PDA
= Breakdown measurements show representative ——r T T T T T
curves for each PDA relative to surface treatment 1073 .
= ALO; film breakdown tests "
= Small variation with breakdown trend near 5 MV/cm — 10-6 i
for 750 °C PDA o
= Higher temperature PDAs reduce leakage current and 5
breakdown voltages, but increase crystallization O 10 i
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P Conclusions

SiO,/GaN films show D within range of current SiC power devices
= |ncreased integration time during testing may allow for more trap interaction
= D, did not notable change with varying surface clean

= Largest improvements to D, and leakage reduction with 850°C PDA
= ALO; films at 850°C unable to reach deep accumulation

= |ncreased Al,O5 capacitance at higher PDA not entirely dependent on thickness
= Varying thickness, dielectric constant, monoenergetic traps

= ALD does not provide accurate dielectric constants for SiO, or Al,Oq
= Requires high temperature PDAs which reduce CV shelf, but crystallize material

= (CVshelf may be reduced via improved deposition and chamber cleans
= |mproved deposition techniques may allow for lower PDA temperatures




P Future work

=  Modifications to C-W, method in order to improve reliability of analysis
= Refine process for W|de bandgap materials

= Additional work towards conductance method
= More complicated process, but will improve D; accuracy

= May allow for more accurate analysis of Al,O; films for MOSFETs

= [nvestigation into improved ALD deposition techniques
= Additional research into gate dielectrics with higher breakdown strengths
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