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Challenges for wide bandgap power devices
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 WBG materials such as GaN improve Si/SiC power devices 
from material properties
 Utilize material properties to enhance performance

 Vertical architectures for high-power applications
 Challenges to design must be addressed before 

implementation
 p-dopant activation
 Mitigation of sidewall damage
 Improved gate dielectric interface

[1] Tsao et al., "Ultrawide‐bandgap semiconductors: research opportunities and 
challenges," Advanced Electronic Materials, 2018.

BFOM = emnEcrit3

Example of vertical device structure

Baliga FOM for power devices



Dielectric material properties directly related to device performance
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 Properties vary with thickness and deposition methods
 SiO2 most commonly used for MOSFET gates

 Other materials may be preferred with larger k and 
breakdown

 ALD preferred to other deposition techniques
 Conformal coatings
 High aspect ratio
 Low temperature deposition

[2 ] Asubar, et al., "Controlling surface/interface states in GaN-based transistors: 
Surface model, insulated gate, and surface passivation," Journal of Applied 
Physics, 2021.



Defects at interface reduce device functionality
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[2 ] Asubar, et al., "Controlling surface/interface states in GaN-based transistors: Surface model, 
insulated gate, and surface passivation," Journal of Applied Physics, 2021.

[3] Glaser et al., "Analysis of ALD Dielectric Leakage in Bulk GaN MOS 
Devices, WiPDA, 2021. 

 Optimization of interface crucial to device 
performance
 Reduce threshold voltage, leakage, and DIT

 Surface/interface states add excess charges
 Additional available states in energy bands
 Reduced gate control, decreases carrier mobility, and 

increases Ron

 Trapped charges cause large Vth fluctuation

 Previous work on DIT/leakage reduction
 Chemical surface treatments
 Post deposition anneals (PDAs) to dielectric



Routine DIT analysis is difficult for wide-bandgap materials
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[4] Yoshioka et al.,"Accurate evaluation of interface state density in SiC metal-oxide-semiconductor 
structures using surface potential based on depletion capacitance," Journal of Applied Physics, 2012.

 High-Low
 Conventional high-frequency CV measurements 

underestimates DIT in wide bandgap 
semiconductor

 Conductance
 Despite its accuracy, the conductance technique 

is often time consuming and impractical for 
routine device analysis

 C-Ψs
 A relatively simple and fast technique
 Shown to account for fast interface traps and 

reports accurate interface trap distributions



Steps in C-Ψs method analysis
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 Expected values for DIT
 Si – 1e10 cm-2

 SiC – 1e11-1e12 cm-2

 GaN – 1e12-1e13 cm-2 (not commonly reported)

Quasi-Static 
C-V Measurements

Determine Surface
 Potential Constant

Comparing Theoretical
& Experimental 

Depletion Capacitance
DIT Extraction



C-V Characteristics used in C-Ψs analysis
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QFixed + ΦMS

QIT

QTrapped



Methods for device fabrication
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 Samples prepared on n-type GaN
 Nd=1.6x1016 cm-3 drift

 Common surface cleans to substrate
 100:1 HF
 4:1 Piranha at 80 °C

 ALD deposition
 50-nm SiO2 and Al2O3 at 200 °C

 Backside ICP etch using RF bias 125W/10W 
 Gas flow – BCl3/Cl2/Ar (15 min)

 Lithography pattern of 500 μm devices
 Ni/Au top contacts
 Ti/Al backside contact

 PDAs 700 °C – 850 °C to simulate ohmic contact anneals

[5] Monsma et al.,"Savannah ALD Systems: 
Enabling Quick Results," ECS Transactions, 2007.



Reduction in SiO2 Capacitance related to dielectric constant
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 Varying capacitances attributed 
to dielectric constants changing 
with PDA temperatures
 Thickness is not decreasing for SiO2

CV Characteristics SiO2/GaN 4:1 Piranha PDA CV Characteristics SiO2/GaN 100:1 HF PDA
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� = 1.96x105�nm2

� = 50�nm

� 0 = 8.85x10− 12�F/m

Must be changing!



PDAs more significant than surface cleans for reducing DIT for SiO2
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 Post deposition anneals at 850 °C show significant improvement to DIT
 Similar trend shown regardless of surface treatment

DIT SiO2/GaN 100:1 HF PDADIT SiO2/GaN 4:1 Piranha PDA



High temperature PDA improve SiO2 breakdown and leakage
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 Breakdown trends SiO2/GaN 4:1 
Piranha and 100:1 HF PDA SiO2 dielectrics show max breakdown near 

6 MV/cm
 Solid – 4:1 Piranha
 Dashed – 100:1 HF

 Relative improvements to leakage currents 
and breakdown strength at 850°C PDA
 Varying surface treatments show little effect on 

breakdown or leakage



Al2O3 dielectrics highly dependent on ALD quality
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CV Characteristics Al2O3/GaN 4:1 Piranha PDA
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Does not reach 
deep accumulationmid-gap trap 

states



Ellipsometry data shows changes in Al2O3 films 
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 Temperature-induced crystallization/densification
 Large increase for PDA temperatures above 800 °C

 Data shows change to physical and optical properties
 Results in non-real results using C-Ψs method

Al2O3 Ellipsometry data vs. PDA temperature



Anomalies in Al2O3 CV data make accurate DIT analysis difficult
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 Changes to CV characteristics make accurate DIT 
analysis difficult

 700 °C and 750 °C results may not be accurate 
due to the presence of mid-gap states
 Shelf of high density of monoenergetic trap states 

reduces accuracy of analysis

 800 and 850°C device DIT is not possible
 Devices do not reach stable accumulation capacitance

DIT Al2O3/GaN 4:1 Piranha PDA



PDA and surface cleans do not significantly impact Al2O3 breakdown
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 Breakdown measurements show representative 
curves for each PDA relative to surface treatment

 Al2O3 film breakdown tests
 Small variation with breakdown trend near 5 MV/cm 

for 750 °C PDA 
 Higher temperature PDAs reduce leakage current and 

breakdown voltages, but increase crystallization

 Breakdown trends Al2O3/GaN 4:1 Piranha PDA



Conclusions
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 SiO2/GaN films show DIT within range of current SiC power devices
 Increased integration time during testing may allow for more trap interaction
 DIT did not notable change with varying surface clean
 Largest improvements to DIT and leakage reduction with 850°C PDA

 Al2O3 films at 850°C unable to reach deep accumulation

 Increased Al2O3 capacitance at higher PDA not entirely dependent on thickness
 Varying thickness, dielectric constant, monoenergetic traps

 ALD does not provide accurate dielectric constants for SiO2 or Al2O3
 Requires high temperature PDAs which reduce CV shelf, but crystallize material
 CV shelf may be reduced via improved deposition and chamber cleans
 Improved deposition techniques may allow for lower PDA temperatures



Future work
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 Modifications to C-Ψs method in order to improve reliability of analysis
 Refine process for wide bandgap materials

 Additional work towards conductance method
 More complicated process, but will improve DIT accuracy
 May allow for more accurate analysis of Al2O3 films for MOSFETs

 Investigation into improved ALD deposition techniques
 Additional research into gate dielectrics with higher breakdown strengths



Questions?
Caleb E. Glaser 

ceglase@sandia.gov
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