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ABSTRACT

We report new results on our development of the fiber-optic quantum seal (FOQS) which will
provide high-sensitivity tamper detection capabilities at nuclear facilities to enhance safeguards
verification efforts. Long-term verification of critical assets in storage facilities for containment
and surveillance must provide material accountancy with continuity of knowledge. As a part of
this effort, FOQC will enhance current practices by making use of quantum optical probes to
enable fiber-channel integrity checks and sensor data authentication. FOQS consists of an
interferometric quantum transceiver which transmits randomly encoded packets of photons over
an optical fiber loop used to seal a container. These photon packets return to the receiver to be
decoded for field quadrature information. Comparisons of the transmit and receive signals allow
for the characterization of the channel. If the comparison shows high degree of correlation,
channel integrity and authentication are deemed true, while a lack of correlation triggers an
intrusion alarm. The key advantage of the FOQS is that the quantum probes are governed by the
uncertainty principle which prevents the intruder from attacking the channel without leaving a
trace. We present new results obtained in years two and three of this project, including
improvements in the experimental system, automated numerical analysis of obtained
experimental data, and extended theoretical analysis of the FOQS sensitivity under realistic
conditions. These capabilities increase seal sensitivity and enables detection of data falsification
attacks. SNL is managed and operated by NTESS under DOE NNSA contract DE-NA0003525. SAND2022-
XXXX C.

INTRODUCTION

Nuclear safeguards rely on tamper-indicating seals to maintain continuity of knowledge of
monitored items and equipment at nuclear facilities. Such measures are required to prevent
diversion of nuclear materials especially in the presence of an increasing number of potential
sophisticated attacks. Fiber-optic seals already play an important role in this domain serving as
tamper-indicating sensors and integrity checks of critical assets against intrusions. These
capabilities are often derived from the tracking of changes to optical pulses transmitted over a
fiber channel (Figure 1). If significant changes are observed in the pulse properties, an alarm is
tripped.
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Figure 1. Diagram of a general fiber-optic seal transceiver for monitoring assets. The seal consists of a transmitting encoder
which sends light pulses through the fiber channel and a receiving decoder. Changes induced on the light pulses are analyzed to
determine tamper status.
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Enhanced sensor sensitivity is a desired property of the seal to detect man-in-the-middle tamper
attacks. Given that these attacks could impart very small changes to the pulse characteristics, the
seal sensitivity and the associated data analysis must produce high probability of detection with
low false alarms. In this paper, we outline the proof-of-concept results of the fiber-optic
quantum seal which enhances sensor sensitivity and enables a novel detection capability against
data falsification for thwarting intercept-and-resend attacks.

A quantum seal provides capabilities for detecting data-falsification attacks by leveraging the
Uncertainty Principle and the No Cloning Theorem from quantum mechanics [1]. These
concepts prevent an intruder from fully characterizing the properties of the quantum probe pulses
and copying the quantum probes with high fidelity. Any tamper attempt introduces noise to the
measured quantities of the quantum probe thereby signaling the presence of the intruder. The
approach taken in this effort is the use of coherent states as the quantum probes in the prepare-
and-measure scheme [2]. Laser pulses are prepared in coherent states with normally distributed
random values for their two quadratures. These pulses are transmitted over the seal fiber channel
and then measured at the receiver package using balanced coherent detection. The matching of
the transmitted and received quadrature measurements is used to assess the security status of the
seal. We describe below the experimental results and the theoretical and numerical analysis used
to determine the tamper state under the hypothesis-test framework.

EXPERIMENT

The proof-of-concept experimental implementation of the fiber-optic quantum seal makes use of
continuous-variable measurements to estimate the quadrature values of the stream of coherent
states [2]. The basic components of the seal transceiver are depicted in Figure 2. The transmitter
consists of a narrow-line laser modulated with an amplitude (AM) and phase modulator (PM).
The modulators are used to assign orthogonal quadrature values, O and P, for the coherent states.
These pulses are attenuated (Attn.), delivered down the seal fiber channel, and combined with
the split-off local oscillator for quadrature measurement at the balanced detectors (BD). The
balanced coherent detection is performed in the shot-noise limit enabling high sensitivities to
excess noise imparted by tamper attempts.
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Figure 2. Schematic of the experimental setup for the fiber-optic quantum seal. The transmitter consists of a narrow-line laser
with amplitude (AM) and phase modulators (PM) used for encoding. The local oscillator is split off from the transmitter laser and
combined with the signal beam at the balance detector (BD) for quadrature measurements.

The procedure for the seal operation begins with the assignment of random Q and P quadrature
values from a Gaussian distribution of variance, V. These coherent states are transmitted
through the seal fiber channel, and one of the quadratures is measured per probe pulse.
Interleaved among the probe pulses are reference pulses to enable phase compensation to
overcome phase jitter observed between the probe and local oscillator pulses in the
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interferometer. The compensated phase allows for calibrated quadrature measurements for
comparison at transmit and receive.
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Figure 3. Plots of measured quadrature values in phase space over a sequence of signal pulses. Left: Depiction of measurements
of a coherent state in phase space. Middle: Good overlap of Gaussian distribution of transmitted states (red) and received
states (blue). This plot shows the results from a seal with no tamper. Right: Typical histogram of the measured Gaussian-
distributed Q quadratures.

With these calibrations and controls in place, arbitrary coherent states are generated and
detected. On the left plot in Figure 3 is a reconstruction of a coherent state in phase space with Q
and P quadratures each having a value of 10 shot noise units (SNU). The spread in the 500 data
points about the mean value reflects the shot noise. The measurements are extended to a
Gaussian distribution of states as shown in the middle figure. These states are used for seal
monitoring, and this particular result shows the “No Tamper” seal state indicated by the good
matching between the red and blue points. Here, externally induced excess noise did not disturb
the coherent state distribution. In the opposite case, tamper-induced excess noise produces the
“Tamper” seal state with mismatching distributions. The plot on the right of the same figure
shows a typical histogram of the Gaussian-distributed quadratures representing the high-fidelity
control and measurement of the coherent states.

To test the seal response to the “Tamper” state, excess noise was injected using the transmitter
modulators in a controlled way. The resulting data distributions are shown in Figure 4. On the
left plot is the overlapped distribution of the transmitted states (red) and the received states
(blue). As the added-noise standard deviation, VV,, is only 0.6 SNU, the two distributions still
appear to match. In spite of this, the hypothesis analysis as described below distinguishes this
tamper event. In the right phase-space plot, a non-tampered, calibration data set (red) is
overlapped with a tampered, monitoring data set (blue). The latter set has again 0.6 SNU excess
noise inserted. The data points are represented by variables X and Y which capture the
differences in the Q and P quadratures respectively for the transmit and receive states (see
analysis section). Although the red and blue distributions appear similar, the second moment of
these distributions gives away the difference. In the inset of the right plot in Figure 4, the
standard deviation of the calibration and monitoring data sets are listed for X and Y. The
difference in the standard deviation is approximately 0.2 SNU, and this difference directly
contributes to the conclusion on the tamper state of the seal. The detection and discrimination of
distribution changes with sub-shot-noise resolution points to the high sensitivity of the seal. The
quantitative assessment for the binary tamper status of the quantum seal is determined with the
hypothesis-test analysis as described in the next section.
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Figure 4 Left: Overlapped Gaussian distribution of transmitted states (red) and received states (blue). Excess noise is added to
create the “Tamper” seal state. Excess noise amounts to only 0.6 SNU, but analysis can distinguish this tamper event. Right:
Overlap of calibration data set (red) and monitoring data set (blue) plotted using X and Y data representation (see analysis
section below). Excess noise is again 0.6 SNU, and the difference in the second moment of the X and Y distributions (see inset)
for the calibration and monitoring sets trips the alarm for the tamper state.

THEORETICAL ANALYSIS

To mathematically describe the quantum seal operation, we assume that the channel, with or
without tampering, is represented by a lossy, noisy passive Gaussian process that models channel
transmittance, channel excess noise, detection inefficiency, and electronic detector noise. Under
this assumption, (Q4) = (P4) = (Qg) = (Pp) = 0, and properties of Alice’s and Bob’s observables
are completely described by their second moments. Therefore, it is convenient to use the
covariance matrix y 4p Whose elements are expectation values (0;0;) where O = {Q4,P4,05,Pp

} [8]. The respective covariance matrix is [2][6]:

Valoxo NIV al 52 )
= . 1
Yap (\/ﬁVAlzxz Tn(Va+ 1+l @

Here, I, is the 2 X 2 identity matrix, T is the channel transmittance, 7 is the detector efficiency
(so the overall effective transmittance is T = T1), € 1s the channel noise (referred to the input
of the channel), and V 4 is the variance of Alice’s Gaussian modulation of the signal pulse. The
noise can be modeled as a sum of three terms [8][6]:
1-— T77 Vel
=———+-—+¢ 2
£= 0t @
where the first term is the loss-induced vacuum noise, the second term is the contribution of the
detector electronic noise with the variance V), and ¢ is the excess noise in the channel. In the
unperturbed channel, we set € = €,, and in the presence of tampering, € = ., + &, Where &, is
the additional excess noise due to the actions of the intruder.

We assume that during a session, Alice prepares and sends 2n pulses. On a randomly selected
subset of n received pulses Bob performs homodyne measurements of the Qp quadrature, and on
the remaining subset of n pulses Bob performs homodyne measurements of the Pp quadrature.
These measurements result in two sets of values: qg = {qp1,952,---9Bn} and Pp = {PB1,PB2,-»
pen}- Each value gp; (i = 1,2,...,n) has one-to-one correspondence with the value g4; of the
respective pulse generated by Alice, and analogously for pp; and p4;. Using these sets of values,
Alice and Bob generate two other sets: X = {x1,X3,...x,} and y = {y1,¥2,...¥n}, Where x; = qp;
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— qq; and y; = pp; — p4;- Formally, these sets of values correspond to measurements of the
observables

X=Qp—0Qa Y=Pp—Py 3)
Obviously, (X) = (Y) = 0, and second moments are obtained using Eq. (1):
(X2)=(Y?)=Varr=Va+Tn(Va+ 1+ —2yTV,, (XY)=(YX)=0. (4)

For the sake of generality, we set n = nq for the calibration session and n = n, for any of the
monitoring sessions.

As seen from Egs. (4) and (2), a tampering attempt will change the statistics of the sets x and y
due to an increase in the excess noise value €. This change can be detected using a statistical
hypothesis test that compares the sets (Xmon,Ymon) Obtained in each monitoring session to the
sets (XcaYcal) Obtained in the calibration session. Specifically, we consider the use of three types
of statistical tests: the Kolmogorov—Smirnov (KS) test, the Anderson—Darling (AD) test, and the
covariance matrix (CM) test.

Each test compares the sets of values (Xmon,Ymon) and (Xca,¥cal) to determine whether they
came from the same statistical distribution or different statistical distributions. Formally, this is
done by formulating two complementary hypotheses:

1. Hy: values in the sets (Xmon,Ymon) a0d (XcanVcal) came from the same statistical
distribution.

2. Hj:values in the sets (XmonYmon) a0d (XcaVeal) came from different statistical
distributions.

Each test generates a quantity p known as the p-value, which is the probability of obtaining test
results at least as extreme as the results actually observed, under the assumption that the null
hypothesis (H) is correct. The p-value is compared against a pre-defined threshold value a,
which is referred to as the /level of significance, such that the null hypothesis is accepted if p =
and rejected if p < a. In terms of tamper detection, if the null hypothesis is accepted, then we
conclude that the channel was not perturbed, indicating that no tampering happened. Conversely,
if the null hypothesis is rejected, then we conclude that the channel’s properties changed after the
calibration was performed, indicating that a tampering attempt did happen.

The covariance matrix elements for the (x,y) data set are obtained from Eq. (4), specifically,

2
_ Ox Pxy9x0y\ _ (Vaier O
Vxy = <pxy0x0y 0'32/ > - ( 0 Vdiff)' (5)

where o, and o,, are standard deviations for the sets x and y, respectively, and p,,, is the
correlation coefficient between x and y. If the channel parameters change, this will affect the
covariance matrix elements in Eq. (5). Assuming that the channel is described by a Gaussian
process whether tampering is absent or present, the covariance matrix elements can be used to
test the null hypothesis H described above. Specifically, the CM test [11] uses a vector of five
statistical moments:

0= (,le,,Lly,O'x,pxy,O'y)T, (6)
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where 1, and u,, are mean values for the sets x and y, respectively. For the coherent-state
quantum seal implemented as described here, u, = i, = 0, pyy, = 0, and 0, = 0, =V difr.

As described in [11], the CM test determines whether two data sets (x4,y;) and (X,,y,) came
from the same normal distribution by determining whether respective vectors 81 and 6, are
statistically different.

The KS statistic [5][10] and the AD statistic [3] quantify a distance between the empirical
distribution function of the sample and the cumulative distribution function of the reference
distribution, or between the empirical distribution functions of two samples. For the KS test, we
compute the p-value numerically using the routine scipy.stats.ks 2samp, which follows the
analysis in [4]. Since we have to compare two-dimensional samples (x4,y;) and (X,y,), we use
the KS test performed for various pairs of one-dimensional samples: x; and X, (denoted as KS-
X), y1 and y, (denoted as KS-Y), z; and z,, where z = {x1,x,...X,Y1,Y2,--+Vn} 1S the
concatenated set of all quadrature measurements (denoted as KS-XY). For the AD test, we use a
version developed in [9] for multiple (two or more) samples, and employ its numerical
implementation by the routine scipy.stats.anderson_ksamp to compute the p-value. Since we
have to compare two-dimensional samples (x1,y1) and (x;,y), we use the AD test performed
for various pairs of one-dimensional samples: x; and X, (denoted as AD-X), y; and y, (denoted
as AD-Y), z; and z, (denoted as AD-XY), as well as the foursome of one-dimensional samples:
X1, X2, V1, and y, (denoted as AD-4).

We used numerical simulations to evaluate the performance of the statistical tests described
above and investigate the dependence of the tamper detection sensitivity on various parameters
of the quantum seal setup. In each simulation, we generated two two-dimensional samples of
random numbers: (x4,y;) and (X,,y,), where each of the samples x; and y; was of size nq, each
of the samples X, and y, was of size n,, and all samples came from normal distributions that
correspond to the covariance matrix in Eq. (5). Specifically, the performance of the statistical
tests was evaluated on two cases:

Case 1: Both two-dimensional samples are randomly generated from the same normal
distribution: uy = p = 0, 01 = 02 = /Vaiff(€ = €cn), where we explicitly denoted the
dependence of the variance V ;¢ on the excess noise. This case corresponds to no tampering, and
therefore each trial in which the null hypothesis was accepted (p = «) corresponded to a true
negative, while each trial in which the null hypothesis was rejected (p < a) corresponded to a
false positive. A measure of performance is the false positive rate (FPR), given by the ratio of
false positive counts to the total number of trials.

Case 2: Each two-dimensional sample is randomly generated from a different normal
distribution: uy = uy = 0, o; = \/Vaifr(€), for i = 1,2, where g1 = &, and &, = &4, + &p. This
case corresponds to a tampering event, where the intruder adds the excess noise ¢;,,, and
therefore each trial in which the null hypothesis was accepted (p = a) corresponded to a false
negative, while each trial in which the null hypothesis was rejected (p < a) corresponded to a
true positive. A measure of performance is the false negative rate (FNR), given by the ratio of
false negative counts to the total number of trials.

In what follows, we use a convention in which values of V4, V¢, €1, and ¢, are all measured in
shot noise units (SNU). For simplicity, we omit "SNU" when citing values of these quantities.
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If the adversary employs the “intercept and resend” attack (i.e., they divert the light from the seal
fiber using adiabatic optical signal rerouting, perform a heterodyne measurement, and resend the
estimated state instead of the original light), they add one SNU of excess noise (i.e., &, = 1).
However, if the adversary does not attempt to remove the seal fiber and just tries to learn about
the system, they might divert and replace only a portion of the light. In this scenario, they will
add a smaller amount of excess noise, and, generally, 0 < ¢;, < 1 (conservatively, we do not
consider a careless intruder that would add classical noise resulting in ¢;,, > 1). Therefore, we
investigate the dependence of the FNR on ¢;,, for various values of FOQS parameters. In all
simulations, we set V¢ = 0.01.

Figure 5 shows FPR values obtained in Case 1 versus the sample size n; (with n, = 0.9n,) and
FNR values obtained in Case 2 versus the additional excess noise due to the intruder, &;,. Each
curve corresponds to a particular statistical test, including the CM test, three variants of the KS
test (KS-X, KS-Y, KS-XY), and four variants of the AD test (AD-X, AD-Y, AD-XY, AD-4).
Each of the FPR and FNR values is obtained from 10000 trials.

FPR from various tests. Vs = 10.0, Ter = 0.5, @ = 0.01, n, = 0.9 ny, M = 10000. FNR from various tests. Va =10.0, Ter = 0.5, @ =0.01, ny = 3200, np =0.9 n;, M = 10000.
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Figure 5. Performance comparison of different statistical tests, including the CM test and various variants of KS and AD tests.
(left) FPR values obtained from 10000 trials in Case 1, versus 1,and (right) FNR values for n1 = 3200 obtained from 10000 trials
in Case 2, versus €in. In both plots, FOQS parameter values are V4 = 10.0, Togr = 0.5, « = 0.01, n, = 0.9n4, £, = 0.01,

Based on the performed analysis, the CM test achieves much lower FNR values compared to
other tests whose performance we studied, and therefore it should be used in practice (except in
the regime when the sample size is small, n; < 1000, which should be avoided). We also studied
the FNR obtained in Case 2 using the CM test in more detail, focusing on the effects of various
FOQS parameters. Based on this analysis, we can choose sensible values for these parameters.
The smaller is the unperturbed value of the variance V gi¢(€), the larger is its relative change due
to the additional excess noise, and the easier is the tamper detection. Therefore, it is advisable:
(1) maximizing detector efficiency and minimizing channel loss in order to achieve T g = 0.5;
(2) for Tg = 0.5 keeping V 4 at values about 10 (larger V 4 values can be used if T o is closer to
1); (3) decreasing existing excess noise in the channel to the level of ¢, < 0.1; (4) keeping
sample size for calibration session at n, = 3000 and sample size for monitoring session at n, >
0.5n1.

The analysis above assumed that, in the absence of tampering, both samples arise from the same
normal distribution. However, in reality, due to experimental imperfections, two distributions
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will not be exactly the same. We incorporated experimental imperfections using a model, in
which the actual value of VV 4 in every session differs from its nominal value due to the presence
of random fluctuations. Specifically, for the ith session, the sample of random numbers (x;,y;)

comes from the normal distribution N'(0,6%), where o; = \/V aire(€), Vaige(e;) =Va + T
Va+1+4&()) —2TnV,, V= Vﬁ,")(l + {)2, where Vﬁf’) is the nominal value of V4, and { is

a random variable, whose value comes from the normal distribution V° (O,Jﬁoise). FPR and FNR
2

values now depend on how large is the noise variance o2, (in the ideal case, 2 ;. = 0, we
recover previous results). For example, the noise standard deviation value o ,4ise = 0.01 can be

thought of as causing 1% spread in the values of v/V 4, and so on.

PR from various tests. V4 =9.0, Tet = 0.5, @ = 0.01, ny = 4000, n; = 1.0 my, €in =1.0, M = 10000. o ;!VR from various tests. V4 =9.0, Tetr = 0.5, = 0.01, n; =4000, n; =1.0 ny, &n=1.0, M =10000.
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Figure 6. Performance comparison of CM, KS-XY, AD-XY, and AD-4 tests, for simulations of the FOQS model with experimental
imperfections. FPR values (left) and FNR values (right) obtained from 10000 trials in Case 1 and Case 2, respectively, versus
Onoise. In both plots, FOQS parameter values are V4 = 9.0, Tegr = 0.5, = 0.01, ny =ny, = 4000, &, = 1.0, &, = 0.01,

Figure 6 shows FPR and FNR vs g,,,ise, for different statistical tests. The smaller is Vﬁ{’), the
larger is the interval of 0,,4ise Values over which the FPR stays at FPR = «a. Since the CM test is
most sensitive one, it exhibits the largest increase of FPR due to V 4 fluctuations. The smaller is

VS)), the larger is the interval of g, values over which the FNR stays at FNR = 0. Since the
CM test is most sensitive one, it exhibits the smallest increase of FNR due to V 4 fluctuations.

ANALYSIS OF EXPERIMENTAL DATA

We developed software tools for automated analysis of experimental data. Analyses have been
performed for two types of experiments:

Type 1: Experiments with no excess noise added, €;,, = 0, in any of the sessions, to simulate
normal FOQS operation in the absence of tampering. These data are used to estimate the FPR.
We refer to a set of sessions that includes one calibration session and a number of monitoring
sessions (compared against that calibration session) as a session-set.

Type 2: Experiments with some excess noise added, ¢;,, > 0, in monitoring sessions, to simulate
FOQS operation in the presence of tampering. These data are used to estimate the FNR as a
function of the variance of the added noise, V,, = ¢;,. For this type, a session-set consists of one
calibration session with VV, = 0 and a number of monitoring sessions with IV, > 0.
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Since an intruder with perfect capabilities can always keep (X) and (Y) values unchanged, we
subtract mean values from experimental samples of Q 4,P 4,05, and Py values for each session, in
order to keep (X) = (Y) = 0. This enables us to eliminate the effect of experimental jitter in (X)
and (Y) values, without providing any information to the intruder that they would not already
have in the ideal case.

Experiments Sessions per Total number FPR for different session-set sizes
in dataset experiment of sessions in
dataset 5 10 20
6-17 20 240 0.0052 0.0046 0.0088
21-40 20 400 0.0188 0.0167 0.0105

Table 1. FPR values obtained using the CM test with @ = 0.01 from two experimental datasets of Type 1 with

ny =ny = 3200 and~/Va = 3.0. Each experiment includes 20 sessions which can be divided into session-sets of different size:
four session-sets of size 5; two session-sets of size 10; one session-set of size 20.

0.06 025

020

I3
4

Average p-value

o
2
False Negative Rate
s

0.02

01 02 03 04 05 06 01 02 03 04 05 06
sqrt(V_n) sqrt(V_n)

Figure 7. Average p-values (left) and FNR values (right), plotted versus \'Vn, obtained using the CM test with & = 0.01 from an
experimental dataset of Type 2 with 150 session-sets, N1 =Ny = 4000, and~/Va = 3.0. Each session-set consists of one
calibration session with V, = 0 and six monitoring sessions with \'Vn = 0.1,...,0.6,

Table 1 shows FPR values obtained using the CM test with & = 0.01 from two experimental
datasets of Type 1. These FPR values are on the order of @, which is in a good agreement with
theoretical predictions, given statistical errors of FPR estimation from a small sample of values
(from 12 to 80 values, depending on the session-set size). Figure 7 shows average p-values and
FNR values plotted versus /Vy, obtained using the CM test with & = 0.01 from an experimental
dataset of Type 2 with 150 session-sets. Importantly, we observe FNR = 0 for /V, > 0.5. This
combination of results show conclusive tamper-state determination in the sub-shot-noise regime
using the quantitative hypothesis-test for FOQS.

CONCLUSIONS

A proof-of-concept fiber-optic quantum seal has been developed and demonstrated.
Implementation effort for system control and stability has established high-fidelity encoding of
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coherent states as quantum probes and shot-noise level resolution of probe quadratures. These
capabilities enabled detection of tamper-induced excess noise changes below a shot noise unit.
The resulting seal sensitivity has significant impact on seal performance as the sophisticated
man-in-the-middle data falsification attack becomes detectable.

We have developed a theoretical model of the FOQS employing weak coherent states of light. A
tampering attempt results in added excess noise in the channel, which is detected by using
statistical hypothesis testing. We have performed a numerical analysis to quantify the FOQS
performance with different statistical tests and sensitivity with respect to various practical
parameters. We have also extended the numerical analysis to include the effect of experimental
imperfections (random fluctuations of V 4). We have developed software tools for automated
analysis of experimental data. The capability to perform on-line analysis of measured data is
critical for transforming the experimental FOQS system into a practical tool. The performed
analysis of experimental data is a proof-of-principle demonstration of this capability.

REFERENCES

[1] Williams, B. P., K. A. Britt, and T. S. Humble. 2016. “Tamper-Indicating Quantum Seal.” Phys. Rev. Applied 5
(January): 014001. https://doi.org/10.1103/PhysRevApplied.5.014001.

[2] Soh, D. B. S., C. Brif, P. J. Coles, N. Liitkenhaus, R. M. Camacho, J. Urayama, and M. Sarovar. 2015. “Self-
Referenced Continuous-Variable Quantum Key Distribution Protocol.” Phys. Rev. X 5 (October): 041010.
https://doi.org/10.1103/PhysRevX.5.041010.

[3] Anderson, T. W., and D. A. Darling. 1952. “Asymptotic Theory of Certain ‘Goodness of Fit’ Criteria Based on
Stochastic Processes.” Ann. Math. Statist. 23 (2): 193-212. https://doi.org/10.1214/aoms/1177729437.

[4] Hodges, J. L. 1958. “The Significance Probability of the Smirnov Two-Sample Test.” Ark. Mat. 3 (5): 469-86.
https://doi.org/10.1007/BF02589501.

[5] Kolmogorov, A. 1933. “Sulla Determinazione Empirica Di Una Legge Di Distribuzione.” Giorn. Ist. Ital. Attuar.
4:83-91.

[6] Laudenbach, F., C. Pacher, C.-H. F. Fung, A. Poppe, M. Peev, B. Schrenk, M. Hentschel, P. Walther, and H.
Hibel. 2018. “Continuous-Variable Quantum Key Distribution with Gaussian Modulation—the Theory of
Practical Implementations.” Adv. Quantum Technol. 1 (1): 1800011. https://doi.org/10.1002/qute.201800011.

[7] Sarovar, M., D. Farley, D. B. S. Soh, R. Camacho, and C. Brif. 2019. “Secure Fiber Optic Seals Enabled by
Quantum Optical Communication Concepts.” https://www.freepatentsonline.com/10341015.html.

[8] Scarani, V., H. Bechmann-Pasquinucci, N. J. Cerf, M. Dusek, N. Liitkenhaus, and M. Peev. 2009. “The Security
of Practical Quantum Key Distribution.” Rev. Mod. Phys. 81 (September): 1301-50.
https://doi.org/10.1103/RevModPhys.81.1301.

[9] Scholz, F. W., and M. A. Stephens. 1987. “K-Sample Anderson—Darling Tests.” J. Am. Stat. Assoc. 82 (399):
918-24. https://doi.org/10.1080/01621459.1987.10478517.

[10]Smirnov, N. 1948. “Table for Estimating the Goodness of Fit of Empirical Distributions.” Ann. Math. Statist. 19:
279-81. https://doi.org/10.1214/aoms/1177730256.

[11]Sullivan, J. H., Z. G. Stoumbos, R. L. Mason, and J. C. Young. 2007. “Step-down Analysis for Changes in the
Covariance Matrix and Other Parameters.” J. Qual. Technol. 39 (1): 66-84.
https://doi.org/10.1080/00224065.2007.11917674.

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views of the
U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of
Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525. SAND No. 2022-XXXX C.

10


https://doi.org/10.1103/PhysRevApplied.5.014001
https://doi.org/10.1103/PhysRevX.5.041010
https://doi.org/10.1214/aoms/1177729437
https://doi.org/10.1007/BF02589501
https://doi.org/10.1002/qute.201800011
https://www.freepatentsonline.com/10341015.html
https://doi.org/10.1103/RevModPhys.81.1301
https://doi.org/10.1080/01621459.1987.10478517
https://doi.org/10.1214/aoms/1177730256
https://doi.org/10.1080/00224065.2007.11917674

