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Background




1. Dozens of existing salt constitutive models
1. Phenomenological to micro-physically based
2. Simple vs. full featured

2. My model priorities
1. Phenomenological, yet motivated by micro-physical observations
2. Conforms to the framework of Rational Thermodynamics
3. Captures viscoplasticity, damage, and healing
4.  Captures viscoplastic hardening behavior
1. Hardening transition from low to medium stresses (strain rates)
2. Hardening transition from medium to high stresses (strain rates)

3. Re-hardening during non-monotonic loading

I
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I



+ 1 Hardening Transition from Low to Medium Stresses (Strain Rates)

WIPP Salt, Constant Stress, Strain History
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Experimental measurements from: Salzer et al. (2015) and Dusterloh et al. (2015).



s | Hardening Transition from Low to Medium Stresses (Strain Rates)

Transient Strain After 50 days at 8= 60 °C
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Experimental measurements from: Salzer et al. (2015) and Dusterloh et al. (2015).
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Avery Island Salt, Stress vs. Strain Curves at =100 °C
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Experimental measurements from: Horseman, ST and Handin, J. (1990) and Carter, NL,
Horseman, ST, Russell, JE, and Handin, J (1993)



7 ‘ Hardening Transition from Medium to High Strain Rates (Stresses)

Avery Island Salt, Stress vs. Strain Curves at 8= 100 °C
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Experimental measurements from: Horseman, ST and Handin, J. (1990) and Carter, NL,

Horseman, ST, Russell, JE, and Handin, J (1993)
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: ‘ Hardening Transition from Medium to High Strain Rates (Stresses)

Avery Island Salt, Stress vs. Strain Curves at 8= 100 °C
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Experimental measurements from: Horseman, ST and Handin, J. (1990) and Carter, NL,

Horseman, ST, Russell, JE, and Handin, J (1993)
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9 ‘ Re-hardening During Non-Monotonic Loading
Multi-Stage Constant Stress Test on Cayuta Salt
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Experimental measurements from Aubertin et al. (1999)
Experimental measurements from: Mellegard et al. (2007)



Model Overview




11 | Viscoplastic Branches
A (Rough) Steady-State

Pressure Solution and Dislocation Glide Deformation Mechanism Map
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12 | Microstructural Observations

Wavy Slip Bands A (Rough) Steady-State
Deformation Mechanism Map

Uniform Dislocation

Density
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0/0,,

Raj, S. V. and Pharr, G. (1989). “Creep substructure formation in sodium

chloride single crystals in the power law and exponential creep regimes”. ®m =1077K
In: Materials Science and Engineering: A 122.2, pp. 233-242. E2 =10 GPa
Carter, NL, Horseman, ST, Russell, JE, and Handin, J (1993). Rheology Average grain size = 10 mm

of rocksalt. Journal of Structural Geology. Vol 15. No 9-10. pp 1257-1271.
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13 ‘ Steady-State Strain Rate Calibration 6= 60°C m
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Garofalo, F. (1963). An empirical relation defining the stress dependence of minimum creep rate in metals. In: Trans. AIME 227, pp. 351— 1 OO

356.




107 4

105

Steady-State Strain Rates _ 106 4
&P

|
14 ‘ Steady-State Strain Rate Calibration m
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s 1| Strain Rates While Hardening

Strain Rates
(proportional, monotonic, loading)
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s | Strain Rates While Hardening
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7 1 Strain Rates While Hardening

Strain Rates
(proportional, monotonic, loading)
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18 | Dislocation Glide Hardening Uniform Dislocation

Density

Equivalent Stress Decomposition
(proportional, monotonic, loading)

Drag Stress Contribution
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Raj, S. V. and Pharr, G. (1989). “Creep substructure formation in sodium chloride single crystals in the
power law and exponential creep regimes”. In: Materials Science and Engineering: A 122.2, pp. 233-242.
Carter, NL, Horseman, ST, Russell, JE, and Handin, J (1993). Rheology of rocksalt. Journal of Structural
Geology. Vol 15. No 9-10. pp 1257-1271.




o | Dislocation Glide Hardening Saturation (Steady-State)

Equivalent Stress Decomposition
(proportional, monotonic, loading)
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Hardening Calibrations




High Constant Strain Rates at 6= 27 °C

|
21 | Selected Hardening Measurements on WIPP Salt m
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High Constant Strain Rates at 6= 27 °C

|
22 ‘ Calibration 1A1: Drag Stress Only m

. . 70
Transient Strain After 50 days at &= 60 °C B
Low Medium High —=- Sim, Cal 1A1
102 Stresses Stresses Stresses 60 1
50 -

: 107 4 g ~
~tr -
g'(h) (MPa) PP ot
(%) 40 - PP e

100 ; ,/” ”——’——
//” e
30 A / ’,,¢*’
10! [
® //
w7
- ¢ 20 {
1072 4 :
] o EXp y
- —— Sim, Cal 1A1 10 - -=-10"1/s
102 VAN e —————— —— 105 1/s |
10° 10! 102 -=-10"%1/s
E—— d' (MPa) O T T T T
0 5 10 15 20 25 I

——— & — E5(t) (%)

Experimental measurements from: Salzer et al. (2015) and Dusterloh et al. (2015). I



23 ‘ Calibration 1A2: Drag Stress Only

High Constant Strain Rates at 6= 27 °C

. . 70
Transient Strain After 50 days at &= 60 °C B
Low Medium High - —- Sim, Cal 1A2 -
102 Stresses Stresses Stresses 60 1 s
/,,’ ,—’—
50 . ""—-—
107 - ¢ ="
(MPa) e
40 P C i
O | -
10 . 4 ¥
[ J II ,/J
- 30 - /
10" ° /
(4 /

] o 20 A
1072 g

] o EXp 1

| — Sim, Cal 1A2 104 - 107 s
10—3 — - —_— - 10_51/8

10° 10! 102 -=-10"%1/s
E—— d' (MPa) O T T T T
0 5 10 15 20 25

Experimental measurements from: Salzer et al. (2015) and Dusterloh et al. (2015).

——— & E5(t) (%)

&
\
|



24 ‘ Calibration 1C: Drag Stress and Back Stress

Transient Strain After 50 days at &= 60 °C
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Partial Validations




26 ‘ Re-hardening during Non-Monotonic Loading

Constant Strain Rate Test on Artificial Salt
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Multi-Stage Constant Stress Test on Cayuta Salt
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27 ‘ Re-hardening during Non-Monotonic Loading

Constant Strain Rate Test on Artificial Salt Multi-Stage Constant Stress Test on Cayuta Salt
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28 ‘ Re-hardening during Non-Monotonic Loading

Constant Strain Rate Test on Artificial Salt
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Summary & Future Work




1. The new model is largely phenomenological, but key decisions were motived by micro-physical
observations.

1. Pressure solution and dislocation glide branches

2. Drag stress hardening and back stress hardening

3. Captures rock salt’s viscoplastic behavior over a wide range of strain rates (10-'2to 104 1/s)
4.  Predicts re-hardening behavior after non-monotonic loading

2. Future work
1. Polish numerical implementation
2.  Simulate underground structures

3. Add damage and healing

|
50§ Summary & Future Work m
|
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33 ‘ Damage-Free, High Strain Rate, Munson-Dawson Predictions
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s« 1| Munson-Dawson Model Constant Strain Rate Predictions @!
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35 ‘ Damaged, High Strain Rate, Behavior
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36 ‘ Damaged, High Strain Rate, Behavior

«— D —»

Ol ™~

A

A

A

0=25°C, &,=10"g"

70
Confining
Pressure (o)
6079 [—1.0MPa
— 20.0 MPa
50 A
40 -

Strength loss
due to damage

30 1

20 1

10 1

0 T T T T
0 5 10 15 20

25

— gzz_gzz(tO) (o/o)

Experimental measurements from: Salzer et al. (2015) and Dusterloh et al. (2015).




‘ Constant Strain Rate Tests on Artificial Salt

Fig. 1.
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38 ‘ Back Stress Measurements m

Creep Responses due to Small Stress Changes

Asse Rock Salt
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39 ‘ Dislocation Glide Hardening
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40 ‘ Constant Strain Rate Behavior
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«+ I Dislocation Glide Hardening
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42 | A “Gedankenexperiment”

Mechanical Responses

. Hard
Schematic o
f=d A T Gomposite
Subgrains * Soft

Soft Hard

Original "Gedankenexperiment” from: Mughrabi, H. (1983) Dislocation wall and cell structures and long-range internal stresses in deformed metal crystals. Acta Metallurgica. Vol. 31. No. 9. pg. 1367-1379




43 | A “Gedankenexperiment”

Mechanical Responses

Hard

Schematic
f=FA . Composite /

Subgrains * Soft / /

Soft Hard

Original "Gedankenexperiment” from: Mughrabi, H. (1983) Dislocation wall and cell structures and long-range internal stresses in deformed metal crystals. Acta Metallurgica. Vol. 31. No. 9. pg. 1367-1379




44 ‘ Bauschinger Effect

Gedankenexperiment
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45 ‘ Back Stress Hardening m
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46 I Reverse Creep at Low Stress and Room Temperature m

Multi-stage Constant Stress Predictions (Cal 1C )

(different stresses than on Landes salt)
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47 ‘ Room Temperature Stress Drop Behavior
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48 ‘ Gas Storage Cavern, Volume Loss with Wellhead Pressure Cycling
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