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LPBF can produce significant mechanical variability

4

(J. Madison, T. Ivanoff, O. Underwood, SNL)

Kramer et al., IJF 2019

Roach, A.M. et al. Additive Manufacturing 2020



Computed Tomography (CT) offers a way to quantify defect 
structure
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Images: David Moore

MA Vicente, J Mínguez, DC González, Computed Tomography – Advanced Applications, 2017
Images courtesy David Moore



Challenges remain in use of CT data
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Can we make meaningful 
performance predictions with 

knowledge of defect structure?



Vision: Rapid failure prediction based on microstructure 
enabled by Machine Learning
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Simulation Code

Synthetic 
Microstructures

with varied properties
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Image: oldcomputers.net

Requirements: Training data with accurate 
microstructure and mechanical behavior
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In situ tensile experiment with μCT
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Zeiss Xradia 620 μCT

• Effective voxel size of 2.1 μm
• Intermittent scans at 
     fixed displacements
• ~3hr per scan

Tensile specimen

1 x 0.45 mm x 4.17 mm gauge section
• Al-10Si-Mg powder <44 μm diameter
• Printed on EOS M400-1
• Stress-relief annealed after build (550 °C)

Loading
Direction

Image courtesy Zeiss.com



Statistical assessment of scan requires a constant sample volume
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Loading
Direction

Initial Scan Last Intact Scan



Tensile results
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Stress determined using minimum 
cross-sectional area from initial scan



Tensile results
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Stress determined using minimum 
cross-sectional area from initial scan

Failure Location

1400 μm



Pore size distribution increases slightly, with minimal evidence of 
nucleation during loading
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Pore size distribution increases slightly, with minimal evidence of 
nucleation during loading
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Nearest neighbor distances support lack of pore nucleation
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Pores are highly spherical in unloaded state
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• Can create 2D histogram of ellipsoid aspect 
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• Rod-like features (2 low aspect ratios)

• Plate-like features (1 high aspect ratio)

• Spherical features (2 high aspect ratios)
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Can analyze pore growth by tracking the largest pores in the volume

23

Failure Location

Strain:        %

Loading
Direction

210 μm

Equivalent Diameter (μm)

Relative 
Volume



Can analyze pore growth by tracking the largest pores in the volume
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Can analyze pore growth by tracking the largest pores in the volume
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• Most large pores grow in volume 

between 2-10%

• Only two pores found to shrink

• Some pores appear to get much 

larger, due to pore merging



Can analyze pore growth by tracking the largest pores in the volume
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Pore Merging

Strain:        %

Loading
Direction

210 μm

Equivalent Diameter (μm)

Relative 
Volume



Particle tracking can be extended to generate displacement fields 
for the entire volume
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Displacement
(μm)

• Uses thin plate spline algorithm 

with tracked particles as control 

points

• Plan to convert this to local strain 

measurements to compare to FEA 

modelling
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Modeling Workflow
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Slide: Chris Laursen
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Cubit/Sculpt 
Mesh

Simulation

Calibrate plasticity 
parameters

With plasticity 
parameters fixed, 
calibrate damage 

parameters porous 
mesh

Predict failure in 
porous samples using 

varying resolution 



Model Setup
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• Implicit tension models run in Sierra FEA code

• “Pads” added on top and bottom of part to provide force 
buffer for boundary conditions. *Unnecessary if portion of 
grips are included in scan

• Cubit/Sculpt creates mesh by converting cartesian grid voxels 
to hexahedral elements and smoothing edges

• Constitutive response captured with plasticity and local 
damage models

Nodal lateral 
constraints applied 

on red lines for 
Poisson contraction

Voce1 Hardening

1Voce, E., J. Inst. Metals 1948
2Cocks, A.C.F. and Ashby, M.F., Metal Science 1980

Cocks-Ashby2 Void Growth
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Failure location can be accurately predicted with sufficient mesh 
resolution and calibration (15 micron mesh size, m=20) 



Calibration to force-displacement data alone can be insufficient
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Force-displacement response– fixed damage parameters, different 
voxel sizes
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Mesh size results
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189k elements
40 cpus

3.7 hr wall time

340k elements
70 cpus

4.2 hr wall time

767k elements
155 cpus

3.7 hr wall time



Fracture locations – fixed damage parameters, different voxel sizes

3520µm voxel size15µm voxel size 24.5µm voxel size

• Deleted elements shown in blue

• Fracture location changes lower 
resolution meshes

• Local damage parameters are inherently 
mesh-size dependent



Force-displacement response– fixed 15µm voxel size, different 
damage parameter m
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Von Mises response– fixed 15µm voxel size, different damage 
parameter m
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m=15 m=10m=20
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Conclusions

• In situ 3D characterization enables comprehensive analysis of 

pore statistics and porosity evolution under loading

• Microstructure response was dominated by pore growth, with 

largest pores growing ~5% in volume under similar % strains

• Failure location in AM parts can be predicted via FE modeling

• Calibration to global metrics (force-displacement) may be 

insufficient to predict failure sites

• Model parameters and predictive capabilities are sensitive to 

mesh size and computational limitations

• 3D characterization without grips in tensile experiments poses 

numerous challenges to FE modelling
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