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" LPBF can produce significant mechanical variability
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MA Vicente, ] Minguez, DC Gonzalez, Computed Tomography - Advanced Applications, 2017
Images courtesy David Moore

/ Computed Tomography (CT) offers a way to quantify defect

Volume [mm?]

0.01342

0.01208

0.01075

0.009416
0.008083
0.006749
0.005415
0.004082
0.002748
0.001414

8.066e-005

Images: David Moore




Y

Challenges remain in use of CT data

Serial sectioning Low threshold

(80)  Middle threshold (155) High threshold (230)

VOid Lose image detail Most accurate Loses ot?ject edges
Create image artifacts representation False voids possible

Low threshold (100) Middle threshold (160) High threshold (210)

—-

Retain object edges Retain object edges Lose object edges
Lose all void detail Capture some detail Capture voids (slightly
enlarged)




/" Challenges remain in use of CT data
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Can we make meaningful

performance predictions with
knowledge of defect structure?




/' Vision: Rapid failure prediction based on microstructure
enabled by Machine Learning

Synthetic
Microstructures
with varied properties

Simulation Code
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« 3D Characterization

- Statistical analysis of porosity

* Particle tracking
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Zeiss Xradia 620 pCT
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« Effective voxel size of 2.1 pm
* Intermittent scans at

fixed displacements
e ~3hr per scan

Image courtesy Zeiss.com

/7 In situ tensile experiment with puCT

Tensile specimen

1x0.45 mm x4.177 mm gauge section

« Al-10Si-Mg powder <44 ym diameter

+ Printed on EOS M400-1

« Stress-relief annealed after build (550 °C)

Loading
Direction




Statistical assessment of scan requires a constant sample volume
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Tensile results

/" Stress determined using minimum
cross-sectional area from initial scan
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/ 1400 pm
Tensile results o
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/" Stress determined using minimum
cross-sectional area from initial scan
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// Pore size distribution increases slightly, with minimal evidence of
nucleation during loading

Strain (%)
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// Pore size distribution increases slightly, with minimal evidence of
nucleation during loading

Strain (%)
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Pore
Count
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Nearest neighbor distances support lack of pore nucleation
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/ Pores are highly spherical in unloaded state
74
/

Shape distributions from best-fit
ellipsoid of each pore
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/ Pores are highly spherical in unloaded state

¥ / Initial Scan Most

/

Shape distributions from best-fit 1.0 Likely
ellipsoid of each pore
« Three axes in the ellipsoid: one major (a) 0.8

and two minor (b, ¢
« Aspect ratios are defined as (b/a) and (c/a) 0.6
« (an create 2D histogram of ellipsoid aspect E

ratios, given: = 0.4

* a>Db>c(grayregion is non-physical)
Rod-like features (2 low aspect ratios) 0.3
Least

0.0 Likel
0.0 0.2 0.4 0.6 0.8 1.0 IKely

| (c/a) |
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// 59 Largest pores
/ (equivalent diameter >45 um)

A
3600
um
v

1400 pm

Can analyze pore growth by tracking the largest pores in the volume
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,/ 59 Largest pores
/" (equivalent diameter >45 pm)

N

Can analyze pore growth by tracking the largest pores in the volume

Normalized cross-correlation in Fourier space can track small regions of the volume
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,/ 59 Largest pores
/ (equivalent diameter >45 um)

Can analyze pore growth by tracking the largest pores in the volume

Normalized cross-correlation in Fourier space can track small regions of the volume
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,/ 59 Largest pores
/ (equivalent diameter >45 um)

Can analyze pore growth by tracking the largest pores in the volume

Normalized cross-correlation in Fourier space can track small regions of the volume
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Volume

/ Can analyze pore growth by tracking the largest pores in the volume

Failure Location
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/ Can analyze pore growth by tracking the largest pores in the volume

Largest Pore in Volume
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Pore Count
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59 Largest pores

(equivalent diameter =45 um)
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/" Can analyze pore growth by tracking the largest pores in the volume

Most large pores grow in volume
between 2-10%

Only two pores found to shrink
Some pores appear to get much

larger, due to pore merging




/ Can analyze pore growth by tracking the largest pores in the volume

Pore Merging
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// Particle tracking can be extended to generate displacement fields
for the entire volume
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Displacement
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Uses thin plate spline algorithm
with tracked particles as control
points

Plan to convert this to local strain
measurements to compare to FEA

modelling
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Predictive Modelling

 Formulation

* Sensitivities
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Slide: Chris Laursen

Simulation

SEIEINISIES
With plasticity
parameters fixed,
Predict failure in
porous samples using
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P Model Setup

Implicit tension models run in Sierra FEA code

« "Pads” added on top and bottom of part to provide force
buffer for boundary conditions. *Unnecessary if portion of
grips are included in scan

« Cubit/Sculpt creates mesh by converting cartesian grid voxels
to hexahedral elements and smoothing edges

« Constitutive response captured with plasticity and local
damage models

Voce' Hardening

0 = 0y, + A(1 — exp(—né&P))

Nodal lateral
Cocks-Ashby? Void Growth Cogﬁt;:énﬁiéf%fd
: 2 1—(1—g¢)" 2 (9m — 1 Poisson contraction
PR P BT CE) e EICTIR VY )
3 (1—9) 2m+1 o,

Voce, E., J. Inst. Metals 1948
2Cocks, A.C.F. and Ashby, M.F., Metal Science 1980




// Failure location can be accurately predicted with sufficient mesh
| resolution and calibration (15 micron mesh size, m=20)
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/" Calibration to force-displacement data alone can be insufficient
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// Force-displacement response- fixed damage parameters, different

4 voxel sizes
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’ Mesh size results
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P Fracture locations - fixed damage parameters, different voxel sizes

Deleted elements shown in blue

« Fracture location changes lower
resolution meshes

* Local damage parameters are inherently
mesh-size dependent

15um voxel size 20um voxel size 24.5um voxel Sizeﬂ



// Force-displacement response- fixed 15pm voxel size, different
damage parameter m
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// Von Mises response- fixed 15um voxel size, different damage
parameter m
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Conclusions

%

* In situ 3D characterization enables comprehensive analysis of

pore statistics and porosity evolution under loading

* Microstructure response was dominated by pore growth, with

largest pores growing ~5% in volume under similar % strains
* Failure location in AM parts can be predicted via FE modeling

» Calibration to global metrics (force-displacement) may be

insufficient to predict failure sites

* Model parameters and predictive capabilities are sensitive to

mesh size and computational limitations

» 3D characterization without grips in tensile experiments poses

numerous challenges to FE modelling







