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2 I Introduction

Goal: Create connectivity between
wellbores within a geothermal the
reservoir

Energetics based stimulation to

Drill and Frac

Position Orientation Timing (POTs)

o Scaled Experimentation
o Engineer geologic artifacts (stresses, layers, flaws)

o Study the effects of energetics on the artifacts relative
to their position and orientation to artifacts

o Understand ability of energetics to enhance EGS
connectivity

o Simulation

o Study the interactions available from scaled
experimentation

> Increase the model fidelity based on testing
o Optimized position orientations and timing

Drill Well No.2

Increase local permeability w/energetics




3 ‘ Motivation for Energetics EGS

Energetic Stimulation

Hydraulic Stimulation
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+ | Scaling EGS physics to improve models

Field Scale Lab Scale using Engineered & Natural materials
102-103 meters in scale 10-7-10%scale
106 USD 102 - 103 USD

 Time, Cost, Uncertainty and Risk are reduced

* Experiments can be rapidly configured to study effects of stresses, flaws and emplacements
* Physics of subsurface can be directly observed using high speed diagnostics

« Computational models can evaluate a matrix of experimental configurations

» Computational models can be evaluated against experiments



5 ‘ Computational Guidance

Wellbore Isolation Effects in PMMA (-85 ps) Wellbore Construction Effects in PMMA

rubber

T
&

Isolated Non-Isolated A B C

(Above and Below Source) Open Hole filled w/rubber Open Hole filled w/sand Cased Hole just above source

Damage away from source Damage local to source Damage to casing



7 ‘ Experimental Setup
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Shadowgraph Imaging
SHOCK & FRACTURE

Capture density changes in the sample by observing
the change in refractive index due to shock or
fracture

High speed cameras allows the tracking of features
moving through the material by pixel evaluation

PDV Probes _—

\
L:" Parabolic

Mirror

Capture particle velocity on a samples
surface due to strong waves (shock) via
Fourier transform of laser interferometry

Non contact probe measures difference of
beat frequency difference upon movement
of a surface

AE
Probe
Arrays

Acoustic Emissions(AE)
FRACTURE

Capture emitted waveforms from discrete
spatial-temporal sources (fractures)

Contact probe array measures waveforms to
observe arrival for co-location of a source
using multiple channels




s 1 Shadowgraph Results (PETN Source)

Secondary waves from fracture?

Darkened leading edge associated with
increased stress state of fracture tip

6 ps- First shock from source extending just into
the near wellbore region

24 ps- Primary shock can be seen moving away
from wellbore

40 ps (not shown)- coherent fractures begin to
extend beyond darkened region

80 ps- reflections from primary shock observed
re-enter field of view

80 ps alternating light gray and gray bands
(stress waves) emanate from locations other
than the source suggest secondary energy
release near fracture tip

Near source and adjacent volumes rendered
opaque in later time due to a combination of
increased number of fractures, orientations of,
and filling with product gasses



o ‘ Shadowgraph to PDV correlation of shock (PETN Source)

Streak Image (Shadowgraph derived U) Free Surface Velocity (PDV)

Distance Shadowgraph

o I * Post processed shadowgraph streak
images can be used track shock front (U)

A\ 4

17 m/s peak = 2%,
* Slope of pixel column is inverse of wave

velocity
(less slope = greater velocity)

« Wave front in green moving faster than
ﬂ,_..METFWWJ | fracture fronts (red & blue)
PDV
e « Jordan et. al generated curve fits for
Qa 10 20 3 40 50 60 K a0 90 100 el
Time lus) planar shocks velocities (U) as a

function of internal surface particle
velocities (u,) per Eq (1).

Time

=]
T

Ln
T

Welacily (ms)

(1)U =6486u > —7.823u > +3.549 +2.703
* P P P * Free surface is being observed,

Wave velocity based on curve fits: (Jordan et. al, J. Dyn. Behavior Mat, 2019) collected value is really 2X of an
internal surface for use in Eq (1).

PI_)V Shadowgraph Difference * Shock in this case is also spherically
Derived Derived (%) growing so probe position on cube’s
(km/s) (km/s) surface can influence data
2.73 2.80 2.5

* PDV is great for shock, but what
about fractures?



10 ‘ Acoustic Emissions Results (RP-80 Source)

AE Source Locations vs Time (o, is 2 MPa)

Y Position (m)

Monoblock PMMA w/ 2 MPa Stress
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« Waveforms captured by 2 arrays (4 channels each)

« System sampled at 10 e6 samples/s (Msps)

« Between 50-200 emissions correlated per test

* Color indicates time, size indicates signature
magnitude

AE vs Post Test Artifact
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y ‘ Acoustic Emissions

Source

AE Source Locations vs Time

AE Locations vs Shadowgraph

Monoblock PMMA w/ 2 MPa Stress
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AE of stressed monoblock. o, applied along the Y-axis.
FOV along X. Darker colors correlate to later arrivals
(us). Marker size indicates relative emission amplitude.

Scaled shadowgraph at 50us overlaid on AE (0-50 ps)

of stressed monoblock. Boreholes represented by black

rectangles.
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Nelder, J.A., and R. Mead. 1965. A Simplex Method for Function Minimization. The Computer Journal. 4: 308-313

Ge, M. 2003 Analysis of source location algorithms part II: iterative methods[J]. Journal of Acoustic Emission 21(1), 29-51

Mistras Group. 2014. Express-8 AE System User’s Manual

Correlation to Shadowgraph (RP-80

Acoustic Emissions (3D)

Uniform media with constant wave
speed v

Three sensors may be used to derive
an x, y, and z of source

A 4t sensor can derive y; a difference
in waveform arrival for the array
(calculated vs observed)

“Guesses” for the x, vy, z location of
wave forms are made until the
regression sum y is minimized

Shadowgraph(2D)

’
i

Planar expansion of spherical sources are
observed by the change in refractive index in

the YZ plane

Features in and out of plane may be

substantially obscured or underestimated in

speed
 |.E. Feature with a substantial

component in the X direction that cannot

be discriminated

I I Em B



12 ‘ Fracture Velocity Correlation (RP-80 Source & Layered
C U b e Vertically Layered PMMA w/ 2 MPa Stress
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(Right) with polynomial fracture front fits (blue and AE of layered and stressed cube in the ZY plane. Isolated by emission location

red) and time w/ 6 possible fracture paths. Lower bore represented by rectangle,
' upper bore not shown. ¢, applied along the Y-axis,

Post Processing Shadowgraph (2D) Acoustic Emissions (3D} _ _
. Extract a pixel row to create streak image to track the * Interrogate data to look for fracture front location vs time (I.E.

fracture front fracture velocity)

- 3D & (2D) Velocity (m/s)

- Right going fracture front (blue) @ 323 m/s * Filter data by looking at a volume of interest near a prompt
emission Points P4 P5
»  Fit by polynomial, reasonable value compared to previous P1 387 (359) 279 (136)
research (Kobayashi, 1974; 380 m/s) for Mode | growth in »  Calculate multiple /dx? + dy? +dz?/dt P2 584 (418) 556 (228)

high strain rates with wire break detection method
«  Growth-Arrest-Growth may not accurately capture “velocity” P3 363(166)  435(74)

over these distances & time scales

Expect observed velocities to be lower than Mode | observations (Kobayashi) due to stress cage effect of source



3 ‘ Discussion of Acoustic Emissions

AE vs Post Test Artifact (Stressed) AE vs Post Test Artifact (Layered & Stressed)
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Comments

» Early time fractures near the wellbores and in the inter-well volume appear to be captured

Elliptical network in Blue (left top) vs curved network in Red (right top)

* False/missed emissions are due to several factors

Emissions from source to sensor are attenuated through fracture, damage or delaminated materials
(over 200 samples for intact vs 60 for delaminated blocks)
Differences in bulk material velocity means algorithm breaks down (regression criteria deteriorates as time/damage increase)
Strong waves persist in the volume due to primary shock and strong reflections
* Hardware constraints such as recovery time for sensors cause data rejection
Studies of this scale are worst case.... Small volumes with fast source/reflected waves; a highly challenging temporal-spatial resolution problem




y ‘ Discussion

Conclusions

* Shock is well correlated within 2.5% across PDV and shadowgraph diagnostics

» Stress state did change the preference for fracture orientation (0 vs 2 MPa) despite using a fast
rise time source (may evolve Cuderman’s understanding)

* Acoustic emission detection was added to capture 3D fracture network creation/growth in
transparent materials

* Confidence has been gained by employing AE to the PMMA reservoirs with dual explosive
sources, use of slower/lower shock sources expected to improve results in geologic materials

* Better placement & more AE sensors/arrays are better as they can be isolated from the

action” by a prompt fracture or delamination hiding emissions from a later time active source Monoblock fractures at 600 ps(unstressed left: stressed vertically right)

. . . . w/ same Field of View
* Laminated reservoirs or surrogate contact creates challenges/limitations to sensing weak waves

* This test series is the first known successful application of AE technology in the presence of
explosives....especially in a small scale.... proof of concept it worked exceptionally well.

Future work

* Geologic materials with AE sensing with fast (same as this phase) and slower sources
* Increased size geologic reservoirs (granite) with more sensors

* Develop cross correlation tools for AE data comparisons against geologic post mortem CT scans

* Improvements to capture & processing of acoustic emission data to inform computational model CT layer of stimulated cube (raw left; image processed right)

w/1e-17 m? of unconnected fracture network
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