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Introduction2

 Goal: Create connectivity between 
wellbores within a geothermal the 
reservoir

 Energetics based stimulation to   

 Position Orientation Timing (POTs)
◦ Scaled Experimentation

◦ Engineer geologic artifacts (stresses, layers, flaws)
◦ Study the effects of energetics on the artifacts relative 

to their position and orientation to artifacts
◦ Understand ability of energetics to enhance EGS 

connectivity

◦ Simulation
◦ Study the interactions available from scaled 

experimentation
◦ Increase the model fidelity based on testing
◦ Optimized position orientations and timing 

Drill and Frac

Drill Well No.2  

Increase local permeability w/energetics

Interwell Connectivity 



Motivation for Energetics EGS3

US Patent 59,936 (1866)
Roberts Torpedo Company 

US Patent 2,642,142 (1953)
Stanolind Oil & Gas Company 

Reduced Production: LF-30 (Geysers Field, USA)
 (Mumma et. al, OSTI 5093502, 1982) Induced Seismicity: OTN-3 Well (Helsinki, Finland)

(Kwiatek et. al, AAAS, CC BY-40, 2019)

Energetic Stimulation Hydraulic Stimulation



Scaling EGS physics to improve models4

Field Scale
102-103 meters in scale

106 USD

Lab Scale using Engineered & Natural materials
10-1-100 scale
102 - 103  USD

• Time, Cost, Uncertainty and Risk are reduced 
• Experiments can be rapidly configured to study effects of stresses, flaws and emplacements
• Physics of subsurface can be directly observed using high speed diagnostics
• Computational models can evaluate a matrix of experimental configurations
• Computational models can be evaluated against experiments



Computational Guidance5

Wellbore Isolation Effects in PMMA (~85 μs)

Isolated 
(Above and Below Source)

Non-Isolated 

Wellbore Construction Effects in PMMA

Open Hole filled w/rubber
Damage away from source 

Open Hole filled w/sand
Damage local to source 

Cased Hole just above source
Damage to casing 



Experimental Setup7

Photon Doppler Velocimetry (PDV)
SHOCK

• Capture density changes in the sample by observing 
the change in refractive index due to shock or 
fracture

• High speed cameras allows the tracking of features 
moving through the material by pixel evaluation

• Capture particle velocity on a samples 
surface due to strong waves (shock) via 
Fourier transform of laser interferometry

• Non contact probe measures difference of 
beat frequency difference upon movement 
of a surface

Shadowgraph Imaging
SHOCK & FRACTURE

Acoustic Emissions(AE)
FRACTURE

• Capture emitted waveforms from discrete 
spatial-temporal sources (fractures)

• Contact probe array measures waveforms to 
observe arrival for co-location of a source 
using multiple channels

PDV Probes AE 
Probe 
Arrays



Shadowgraph Results (PETN Source)8

• 6 μs- First shock from source extending just into 
the near wellbore region

• 24 μs- Primary shock can be seen moving away 
from wellbore 

• 40 μs (not shown)- coherent fractures begin to 
extend beyond darkened region

• 80 μs- reflections from primary shock observed 
re-enter field of view

• 80 μs alternating light gray and gray bands 
(stress waves) emanate from locations other 
than the source suggest secondary energy 
release near fracture tip

• Near source and adjacent volumes rendered 
opaque in later time due to a combination of 
increased number of fractures, orientations of, 
and filling with product gasses

Darkened leading edge associated with 
increased stress state of fracture tip

Secondary waves from fracture?
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Shadowgraph to PDV correlation of shock (PETN Source)9

 Wave velocity based on curve fits: (Jordan et. al, J. Dyn. Behavior Mat, 2019) 

Shadowgraph
• Post processed shadowgraph streak 

images can be used track shock front (U)

• Slope of pixel column is inverse of wave 
velocity 

     (less slope = greater velocity)

• Wave front in green moving faster than 
fracture fronts (red & blue)

PDV
• Jordan et. al generated curve fits for 

planar shocks velocities (U) as a 
function of internal surface particle 
velocities (up) per Eq (1).

• Free surface is being observed, 
collected value is really 2X of an 
internal surface for use in Eq (1).

• Shock in this case is also spherically 
growing so probe position on cube’s 
surface can influence data

• PDV is great for shock, but what 
about fractures?

Free Surface Velocity (PDV)

17 m/s peak = 2

Streak Image (Shadowgraph derived U)

PDV 
Derived 
(km/s)

Shadowgraph 
Derived
(km/s)

Difference 
(%)

2.73 2.80 2.5

(1)



Acoustic Emissions Results (RP-80 Source)10

Acoustic Emissions
• Waveforms captured by 2 arrays (4 channels each)

• System sampled at 10 e6 samples/s (Msps)

• Between 50-200 emissions correlated per test

• Color indicates time, size indicates signature 
magnitude

AE vs Post Test Artifact

AE Source Locations vs Time (σy is 2 MPa) 



Acoustic Emissions Correlation to Shadowgraph (RP-80 
Source)
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Nelder, J.A., and R. Mead. 1965. A Simplex Method for Function Minimization. The Computer Journal. 4: 308-313

Ge, M. 2003 Analysis of source location algorithms part II: iterative methods[J]. Journal of Acoustic Emission 21(1), 29–51

Mistras Group. 2014. Express-8 AE System User’s Manual

AE Locations vs ShadowgraphAE Source Locations vs Time

AE of stressed monoblock. σ1 applied along the Y-axis. 
FOV along X. Darker colors correlate to later arrivals 
(μs). Marker size indicates relative emission amplitude.

Scaled shadowgraph at 50μs overlaid on AE (0-50 µs) 
of stressed monoblock. Boreholes represented by black 
rectangles.

(2) � � = �� �� − � ��

(1)

(3)

Shadowgraph(2D)
• Planar expansion of spherical sources are 

observed by the change in refractive index in 
the YZ plane

• Features in and out of plane may be 
substantially obscured or underestimated in 
speed 

• I.E. Feature with a substantial 
component in the X direction that cannot 
be discriminated



Fracture Velocity Correlation (RP-80 Source & Layered 
Cube)
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Rotated image for streak w/ selected pixel row (Left), 
resulting streak image (Center) and the area of interest 
(Right) with polynomial fracture front fits (blue and 
red). 

Post Processing Shadowgraph (2D)
• Extract a pixel row to create streak image to track the 

fracture front

• Right going fracture front (blue) @ 323 m/s

• Fit by polynomial, reasonable value compared to previous 
research (Kobayashi, 1974; 380 m/s) for Mode I growth in 
high strain rates with wire break detection method

AE of layered and stressed cube in the ZY plane. Isolated by emission location 
and time w/ 6 possible fracture paths. Lower bore represented by rectangle, 
upper bore not shown. σ1 applied along the Y-axis,

 
3D & (2D) Velocity (m/s)

Points P4 P5

P1 387 (359) 279 (136)

P2 584 (418) 556 (228)

P3 363(166) 435(74)

Expect observed velocities to be lower than Mode I observations (Kobayashi) due to stress cage effect of source



Discussion of Acoustic Emissions13
AE vs Post Test Artifact (Layered & Stressed)

AE of layered and stressed cube (Left) and Photo (right) in the XY (Top) and 
ZY (Bottom) planes. Boreholes represented by black circles or rectangles. σ1 
applied along the Y-axis

AE of stressed monoblock (Left) and Photo (right) in the XY (Top) and ZY 
(Bottom) planes. Boreholes represented by black circles or rectangles. σ1 
applied along the Y-axis

Comments
• Early time fractures near the wellbores and in the inter-well volume appear to be captured

• Elliptical network in Blue (left top) vs curved network in Red (right top)
• False/missed emissions are due to several factors

• Emissions from source to sensor are attenuated through fracture, damage or delaminated materials 
(over 200 samples for intact vs 60 for delaminated blocks)

• Differences in bulk material velocity means algorithm breaks down (regression criteria deteriorates as time/damage increase)
• Strong waves persist in the volume due to primary shock and strong reflections

• Hardware constraints such as recovery time for sensors cause data rejection
• Studies of this scale are worst case…. Small volumes with fast source/reflected waves; a highly challenging temporal-spatial resolution problem

AE vs Post Test Artifact (Stressed)



Discussion14
Conclusions

• Shock is well correlated within 2.5% across PDV and shadowgraph diagnostics

• Stress state did change the preference for fracture orientation (0 vs 2 MPa) despite using a fast 
rise time source (may evolve Cuderman’s understanding)

• Acoustic emission detection was added to capture 3D fracture network creation/growth in 
transparent materials

• Confidence has been gained by employing AE to the PMMA reservoirs with dual explosive 
sources, use of slower/lower shock sources expected to improve results in geologic materials

• Better placement & more AE sensors/arrays are better as they can be isolated from the 
“action” by a prompt fracture or delamination hiding emissions from a later time active source

• Laminated reservoirs or surrogate contact creates challenges/limitations to sensing weak waves 

• This test series is the first known successful application of AE technology in the presence of 
explosives….especially in a small scale…. proof of concept it worked exceptionally well. 

Future work

• Geologic materials with AE sensing with fast (same as this phase) and slower sources

• Increased size geologic reservoirs (granite) with more sensors

• Develop cross correlation tools for AE data comparisons against geologic post mortem CT scans

• Improvements to capture & processing of acoustic emission data to inform computational model CT layer of stimulated cube (raw left; image processed right)
w/1e-17 m2 of unconnected fracture network

Monoblock fractures at 600 µs(unstressed left; stressed vertically right)
w/ same Field of View
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