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Introduction: particle aggregation and oriented attachment

* Nuclear waste management of Hanford and Savanah River nuclear waste tanks:

Gibbsite and boehmite particles form complex aggregates

« Oriented attachment is a special case of particle aggregation:

Crystalline particles
assemble into a larger
particle by attaching on
specific crystal faces that
are lattice-matched.

iron oxyhydroxide nanoparticles
(Li et al, Science 2012, 336, 1014)
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| Gibbsite particle oriented attachment
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Molecular dynamics simulations
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Basal-basal attachment Basal-edge attachment Edge-edge attachment

Basal-basal surfaces interactions

Energy-structure relationships:
Potential of mean force calculations
(very expensive)
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Per surface area: edge-edge attachment is more favorable
Large particle: basal-basal attachment is more favorable

Journal of Colloid and Interface Science 600, 310-317




| Sliding motion
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by-atom mismatch

Ho et al., in preparation

Importance of atom- |
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: | Energy barriers

Approaching motion

50

-50
-100
-150
-200
-250
-300
-350
-400

Energy (Kcal/mol)

14 15 16 17 18 19 20 21 22 23 33

Distance (Angstrom)

= = N
o wu o

Energy (Kcal/mol)

u

Rotating motion

80 100 120 140 160
Angle (degree)

Sliding motion

Energy/area (Kcal/mol.nm?)
Energy (Kcal/mol)

0 5 10 15 20 25 30 35
Distance (Angstrom)

Approaching motion encounters the highest energy barrier
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9 | Roles of water
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* Water controls the fluctuations in the PMF profiles for all three motions studied
* Water reduces the interaction between two particles
* However, particles still “feel” each other in water.



Water structure
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Water 1S less
structured for the
mis-aligned
configurations,
compared to the co-
aligned
configuration
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1 1 Hydrogen bond network m

Surface OH

Surface OH 0.04 | Co-align —
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Coalignment: # water-water HB 1.86

Probability

Misalignment: # water-water HB 1.75
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« Energy-structure relationships during particle motions: approaching, sliding, and rotating

Basal-basal attachment Basal-edge attachment Edge-edge attachment

SRR ' Per surface area: edge-edge attachment

SRR is more favorable

hnasaand Large particle: basal-basal attachment is
ZM more favorable

* Approaching motion encounters highest energy barrier

« Water properties and atom-by-atom mismatch control the energy-structure relationship during
the motions

Thank you! I

taho@sandia.gov



