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subsurface energy activities can increase pore
pressure and change the stress field, potentially
inducing earthquakes.
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e Geological CO, injection into brine aquifers

_— CO2 injection

generates the multiphase flow system.

e Few studies performed the coupled effect of
multiphase flow and poroelastic deformation on
induced seismicity.
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Objectives

e To understand the physical mechanism of potential induced seismicity along the
fault in a coupled multiphase flow and poroelasticity system.
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Coupling processes within the Reservoir

e For a conductive fault,

1. CO2 penetrates into the fault during injection and accumulates along the fault.

2. Pore pressure diffuses rapidly across the interface between the reservoir and fault (quick equilibrium
state; Figure B).

3. Mechanically, pore-pressure increases causes compression during injection (negative mean stress;
Figure C).

4. Shut-1n eliminates driving force for outward convection which prevents CO2 migration further into
the fault and shrink the reservoir (positive mean stress; extension along the fault), but buoyancy still forces
to migrate sequestered CO2 upward through the fault.

e For a sealing fault,

1. Hydraulic interaction 1s impeded by the fault and bounding low-permeability units (caprock and
basement), such that CO2 and pressure accumulate within a reservoir (No pressure Sg and Ap changes).
2. Stronger mechanical deformation of the reservoir 1s observed (larger displacement; Figure D).

3. Shut-in relieves the 1njection-induced deformation of the reservoir effectively.

Future Works

1. Mechanistic studies with variation in geological heterogeneity and well operations

2. Implementing the field data (e.g. IBDP)

3. Integrating machine-learning approaches to predict pressure and/or stress perturbations associated
with geological carbon sequestration.

e Stability of Reservoir-Bounding Faults
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T | e For a sealing fault,

1. Hydraulic barrier against diffusion and transport, which forms CO2-trapping
zone within a reservoir delimited laterally and vertically by surrounding low-
permeability units.

2. Mechanically, intense CO2 accumulation expands the reservoir and neighboring
layers that generates positive displacement 1n x-direction at the fault
e 3. Terminating injection releases stresses acting on the fault zone adjacent to the
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At = 30 [yr] 4. However, the deep portion of the fault adjacent to the basement experiences
substantial increment of pore pressure as poroelastic response to reservoir expansion
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