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Why reduced order model?

Full order model (FOM) 1s computationally demanding;

This would take 1-2 hours!?2.

Imagine if you do 100,000 times of this type of simulation.

FOM 1s computationally very expensive for high fidelity simulations, uncertainty quantification,
optimization, or inverse modeling

'Kadeethum et al. (2022, Advances in Water Resources)
?Kadeethum et al. (2021, Computers & Geosciences)



Why non-intrusive approach?

Flexibility
° Or both
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Motivation

ROM typically works on ‘parameterized PDEs’ and ‘reduced subspace’
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5 ‘ Motivation - continued

1. A unified framework suitable for problems that lie within both linear and nonlinear manifolds

(proper orthogonal decomposition (POD) yields optimal data compression for linear manifolds) [1]

2. A framework that does not rely on ‘convolutional layers,” which makes our framework applicable to both
structured and unstructured meshes [1, 2]

3. Applying machine learning techniques for the physics-based problems with point source (or Dirac delta

distribution) such as contact problems or subsurface flow with wells = how to deal with imbalanced training
data?

'Kadeethum et al. (2022, Advances in Water Resources)
ZKadeethum et al. (2021, Nature Computational Science)
Shttps:/ /towardsdatascience.com/simple-introduction-to-convolutional-neural-networks-cdf8d3077bac
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1.A key to develop a good ROM 15 to produce better reduced manifolds [1].

2. We apply Barlow Twins (BT) self-supervised learning [1,2], where BT maximizes the information content
of the embedding with the latent space through a joint embedding architecture
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'Kadeethum et al. (2022, Scientific Report , accepted)
¥Zbontar et al. (2021, arXiv:2103.03230)



ldea - continued

3. We apply a boosting concept for our previous BI-ROM [1]

4. Each model (in general sense) 1s trained sequentially using subsample from the training set with weights

6. The weights are calculated based on the current model’s performance (i.e., more error more weights)

5. This way, the model™*?! is forced to learn the samples that model™ fails to mimic

Ensemble(with all its predecessors)

'Kadeethum et al. (2022, Scientific Report, accepted)
*https:/ /towardsdatascience.com/boosting-algorithms-explained-d38£56ef3£30




® 1. Initialization

Methodolog * Trainingset: gt = [®, u®@, .., y™-1) D]

Validation set: fyajidation = randomly select 5% of MN ¢

: . 1, (2 (Mtest—1) |, (Mtest)
TeStlng set: Hiest = utest' ”test' I "ltestteSt ’ I'ltesttBSt .]. e mEEE

We first initialize training,
validation, and testing sets.

These parameters could be
material properties, boundary
conditions, or parameterized
geometry representation.



9 ‘ Methodology

We then build the training set
through by querying full order
model for each parameter.

*This 1s the major cost of
building data-driven model.

1. Initialization

Training set: u = [u(l),u(z), s

Validation set: Mvalidation —

Testing set: Mt = ["‘test’ n

randomly select 5% of MN*

(2)

test’

u(M_l)} u(M)]

(Mtest—1)
"1 Byest

, "‘te

Mtest) ]

" Full order model (FOM)

N.

FOM = Xa(®),... (1)

Same goes for W, Ui



Methodol L Initialization 2. Full order model (FOM)
10 ethodo Og)' Trainingset:p=[u(l),‘u(z),...,”(M—l),”(M)]

. . FOM = X,(up®),..., Xp(g™
Data compression: training BBT-  Validation set: fya1igation = randomly select 5% of MN¢ h(ﬂ ) h (M )

AE model ;
: 1 2 Mtest—1) , (M S )
Testing set: Urost = I”i(:egt' ui(:egt' o, ”"Eestt%t )’”Eestteso ame goes for py, t

Autoencoder loss or
Data compression loss

The machine learning model has " 3. Data compression N7 is total timestep
M .

one encoder, decoder, and BT.ROM N, = 1 Nt — Z NtD ()
i=1

projector. BBT-ROM N,,, > 1 o ;
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) - : - en ! g
architecture. - - random noise m X (Nen) G X SN Xy A »
- - Gaussian blur ‘;(Nen) i 3

Resulting in a better reduced s B projector -

manifolds

If we have 1 encoder, our model
is BT-ROM

If we have mote than 1 encodets,
our model is BBT-ROM




) ‘ Methodology

We then map our parameters to
reduced manifolds using ANN.

*We note that we could use other
regressors such as GP or RBE
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1. Initialization

Training set: g = [u(l),u(z), "y M(M_l);ﬂ(M)]
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4. Mapping (training ANN)

2. Full order model (FOM)

FOM = X (1), ., Xy (1)

Same goes for w,, U,

Autoencoder loss or
Data compression loss

Xn(t,w - LXe

We build separate
model for each X

Barlow Twins loss

X _ X4 rX
Lyt = Li + Lgr



M h d I 1. Initialization 2. Full order model (FOM)
12 ethodo Og)' Training set: g = [ﬂ(l):#(z), ...,”(M—l)}”(M)]

FOM =  X,(u®), ..., Xp(u™
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3. Data compression N7 is total timestep
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Physical problems that we test
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Contact between a rigid indenter and a hyperelastic substrate at finite deformations

Goal: To improve ML training with imbalanced training data (i.e., only one point of contact)

A small area where the deformation occurs while most of the domain remains are undeformed.

Weak form of contact physics
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Results — Poisson’s ratio and indentation depth as parameters

1. It is symmetric; so, we only model a quarter of the
full domain (the contact point is in the middle of the
material)

Parameters
Poisson’s ratio = [0.1, 0.4]
indentation depth = [0.1, 0.3]

Training: 1600
Validation: 80 (5% of training set)
Testing: 100

DOFs: 3993
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Results — Poisson’s ratio and indentation depth as parameters

1. We show here relative error results (compared to full order model)

2. We observe that the proposed model (BBT-ROM) has a better accuracy than our previous model (BT-

ROM), but worse than intrusive-ROM.
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Results — indentation radius and depth as parameters

1. It is symmetric; so, we only model a quarter of the
full domain (the contact point is in the middle of the
material) (the same as in the first problem)

Parameters
indentation radius = [0.15, 0.4]
indentation depth = [0.1, 0.4]

Training: 1600
Validation: 80 (5% of training set)
Testing: 100

DOFs: 3993

[In, In. | =]6.25,0.37]

H= [InR! InD]

all surfaces except the top
surface are applied by roller
boundary condition
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Results — indentation radius and depth as parameters
17

1. We show here a relative error results (relative to full order model) — we observe that the proposed

model (BBT-ROM) has a better accuracy than our previous model (BT-ROM), but worse than in-
ROM.
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Results — indentation locations as parameters
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1. We model the whole domain and contact location
could occur within the black square ‘

2. The indentation depth and radius are fixed

Parameters [x.y]=1[0.2
x-coordinate = [—0.3, 0.3] L5
y-coordinate = [—0.3 0.3] u=[xy]

to avoid boundary effects, we limit values
of x, y to be inside black square

Training: 1600
Validation: 80 (5% of training set)
Testing: 100

all surfaces except the top v

i
surface are applied by roller |
boundary condition L, ‘

b

DOFs: 70602

I
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Results — indentation locations as parameters
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1. We show here a relative error results (relative to full order model)

— we observe that the proposed

model (BBT-ROM) has a best accuracy than our previous model (BT-ROM) and in-ROM.
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Conclusions

1. A ROM framework that works in an optimal way for both linear and nonlinear manifolds

2. A ROM framework that can be applied for both structured and unstructured meshes
3. A ROM framework that can handle data imbalanced problems

4. An uncertainty-aware BT-ROM is in progress to achieve uncertainty quantification (Neural IPS |
2022, in review)



Physical problems that we test - continued
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k / OundS +
pet ag,,~< §N)dun

/ weak form
?XP—FB:U iI’lQﬂ |
_ R o) 2,2y . .
Uu—1a on 393 In(x,y) STon (x*+y~) about origin

We approximate the contact

P-N= T on d QN profile with a parabolic function

P:V(éu)dV — /Bb‘udv / T -6udS =0
Q) Q

We use PETSc SNES as a nonlinear solver and MUMPS as a linear solver with
absolute and relative tolerances of 1 X 107 and 1 X 1071° respectively. We utilize
a backtracking line search with slope descent parameter of 1 X 10™%, initial step
length of 1.0, and quadratic order of the approximation.

‘Numerical Tours of Computational Mechanics with FEniCS



