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Classical Understanding of Turbulence

= Fully turbulent flows consist of a wide range of scales that are categorized (somewhat arbitrarily) as
ranging from large to small.

= Large scales are about the size of the flow and contain most of the energy.
= Small scales are responsible for most of the energy dissipation (dissipation range).
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Are the Microscopic and Macroscopic Levels of Turbulence
Decoupled?

In the study of turbulence, the Navier-Stokes (NS) equations are usually regarded as
the fundamental mathematical equations.

When the Knudsen number is large and rarefaction effects are therefore important,
the Boltzmann equation is used to describe rarefied gas dynamics.

Usually rarefaction effects are absent in turbulence and turbulence is absent in
rarefied flow because the Knudsen number is inversely proportional to the Reynolds
number.

Betchov (1957 JFM and 1960 RGD-2) and more recently Eyink (2021) suggested that
thermal fluctuations (absent in the NS equations) can terminate the cascade at
scales that are much larger than the mean free path.

The small scales of turbulence are not experimentally accessible.
However, these length scales are accessible to molecular simulations.



Simulating turbulence at the molecular level
Can we learn something?

Are the hydrodynamic and molecular length and time scales too far apart?

For a gas flow with a turbulent Mach number Ma and a turbulent Reynolds number Re, the ratio of the
Kolmogorov length scale to the mean free path scales as:

Rel/4/Ma

The ratio of the Kolmogorov time scale to the mean collision time scales as:
Rel/’2/Ma?

Thus, for Re = 10,000 and Ma = 1, these ratios are only O(10) and O(100)

New length scales may be introduced

= Gas-surface interactions (velocity slip, temperature jump)

= Shock-turbulence interactions (shock thickness, O(10) mean free paths)
= Chemical reactions in turbulent flow (non-equilibrium energy transfer)



Taylor-Green Vortex Flow

Taylor-Green (TG) vortex flow is a generic turbulent flow

« Often used in validation of codes and evaluation of subgrid scale models
 Initial condition contains only a single length scale (single wave number)
Turbulent energy cascade can be observed numerically in TG flow

* Flow undergoes a rapid build-up of a fully turbulent spectrum

» Late-time flow exhibits basic features of homogeneous isotropic turbulence

u =V, sin[x/L]cos[y/L]cos[z/L]

v=-V, cos|x/L]sin|y/L]cos|z/L]

w=0

P=Dp, +(,00V02 /16)(005[2x/L] +cos[2y/L])(2 + cos[ZZ/L])
—L <{x,y,z} < 7L

1 S
Initial vorticity isosurface E= IE,O (uz +v +w’ ) dV = turbulent kinetic energy



Taylor-Green Simulation Conditions

Numerical parameters
> Cubical domain, triply periodic boundaries

> Side length = 21, L = 0.0001 m

> Total cells 20003 = 8 billion

> Time step = 0.01-0.25 ns, near-neighbor
collisions

> Molecule Simulators = 0.36 trillion

> Simulation ratio = 16,154

o Time averaging window 10,000 timesteps
- Re =500, 1000, 1500

Gas parameters
> Molecular mass = 66.3%x10-27 kg, monatomic
> Temperature = 273.15 K, viscosity = 2.985%10>
Pa-s
> Molecular model = HS
Simulation Parameters
Simulations performed on LLNL/Sierra

DSMC

Taylor-Green flow from
simulations.

DNS
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Normalized Dissipation —(1/E,)dE/dT

‘ TG Energy Dissipation
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Energy dissipation reveals the fine details of the energy cascade.
DSMC and DNS produce the same evolution of the initial conditions to the turbulent state.




‘ TG Ma=0.3, T=8.7
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‘ TG Ma=0.6, T=8.45
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‘ TG Ma=0.9, T=7.63
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DSMC and DNS Spectra Comparison

tV/L=9
Excellent agreement for low k.
X | NS+Equilibrium
' VGb DSMC shows large-k departure from NS spectrum due to thermal
& fluctuations.
o
g NS equations are inaccurate for k > k_
Q
Q Fluctuation variance overestimated in DSMC when F > 1.
o = These simulations use F = 16,154
]
|_|C_| 10—2 \ . . .
\ \\ Want to determine the k_ that would be observed in a physical gas.
10! 102 103
Dimensionless wavenumber, kL
3 kg 4xr 5

Equilibrium thermal spectrum: £(k) =

2

k_.

p (2x)



Crossover Wavenumber
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Thermal fluctuations dominate almost the
entire dissipation range
= Similar for other Re

ZC /ﬂ’mfp ~ 61

Crossover scale is much larger than the
Mean Free Path (MFP) — in a regime where
NS equations widely believed to be valid.

Agrees with previous estimates (Betchov,
1957, Eyink et al. 2021) and with recent
simulations using the fluctuating NS
equations (Bell et al. 2022)



‘ TG Ma=0.3, T=12.01
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‘ TG Ma=0.6, T=18.47
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‘ TG Ma=0.9, T=14.77
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Spontaneous Stochasticity?
At early times, DSMC and DNS produce similar profiles. At later times, their profiles differ. Why?

Thermal fluctuations may cause unpredictability as they become amplified and introduce more structure to
the flow field (Ruelle, 1979).

Similar to Spontaneous Stochasticity?

For systems with a sufficient amount of energy at the small scales, “formally deterministic fluid
systems...are observationally indistinguishable from indeterministic systems” (E. N. Lorenz, 1969).

DSMC Experiment Navier-Stokes



Conclusions

Nature is molecules, not equations, so
simulations should be molecular as well.

104

Molecular-level DSMC simulations give the first direct
evidence that the WNavier-Stokes equations are not

. . . . . 1072 1
accurate in the dissipation range for turbulence in gases.

Energy spectrum, E(k)
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R. M. McMullen, M. C. Krygier, J. R. Torczynski, and M. A. Gallis, The Navier-Stokes
equations do not describe the smallest scales of turbulence in gases, PRL, 2022.
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