

A Next-Generation Transport Simulator for the Waste Isolation Pilot Plant (WIPP) Performance Assessment

Jennifer M. Frederick¹, Michael A. Nole², Heeho Park³

¹*Sandia National Laboratories, Albuquerque, NM, United States, jmfrede@sandia.gov*

²*Sandia National Laboratories, Albuquerque, NM, United States, mnole@sandia.gov*

³*Sandia National Laboratories, Albuquerque, NM, United States, heepark@sandia.gov*

[leave space for DOI, which will be inserted by ANS]

INTRODUCTION

Waste Isolation Pilot Plant (WIPP) performance calculations estimate the probability and consequence of potential radionuclide releases from the repository to the accessible environment for a regulatory period of 10,000 years after facility closure. The proposed replacement of waste panels in the WIPP challenges the modeling assumptions inherent in the two-dimensional (2-D) flared grid used in PA calculations of flow and transport in and around the repository. Therefore, development of a new three-dimensional (3-D) model for use in PA was warranted. At the core of this task is the development of a single, efficient, 3-D flow and transport simulator (PFLOTRAN [1]) that incorporates WIPP-specific process models to eventually replace a portion of the suite of software (i.e., BRAGFLO [2] and NUTS [3]) that is currently utilized for flow and transport in WIPP PA. The current work presents the development of the new transport mode in PFLOTRAN, named the Nuclear Waste Transport (NWT) Mode, and describes the improvements ~~over the currently utilized NUTS transport simulator for WIPP PA~~. Most notably, the NWT Mode is formulated in terms of the total bulk concentration, rather than the more common aqueous (dissolved) mass concentration, allowing it to accurately accommodate completely dry conditions without numerical difficulty.

GOVERNING EQUATIONS FOR TRANSPORT WITH EQUILIBRIUM CHEMISTRY

The Nuclear Waste Transport Mode in PFLOTRAN models the transport of a species as described by the governing equations for conservation of mass. NWT includes species advection (without diffusion), assuming equilibrium chemistry for precipitation/dissolution, and radioactive decay processes. The NWT Mode process model is executed sequentially at each time step after the full flow field solution is calculated. The primary dependent variable is the total bulk mass of species j , in phase α , denoted by M_j^α . The governing equation is given by,

$$\frac{\partial}{\partial t} \sum_{\alpha} (M_j^\alpha) + \nabla \cdot \sum_{\alpha} (\mathbf{u}^\alpha M_j^\alpha) = \sum_{\alpha} (\dot{Q}_j^\alpha) + \sum_{\alpha} (\dot{R}_j^\alpha) \quad (1)$$

where the total bulk mass of species j , in phase α , is given by,

$$M_j^\alpha = M_j^A + M_j^P \quad (2)$$

and is a sum of the aqueous (A) and precipitated (P) phases which are assumed to be in chemical equilibrium. The units of M_j^α are $\text{mol} \cdot \text{m}_{\text{bulk}}^{-3}$. Furthermore, \mathbf{u}^α is the phase velocity in units of $\text{m} \cdot \text{sec}^{-1}$. On the right-hand side, \dot{Q}_j^α is a generic source/sink term of species j in each phase (in units of $\text{mol} \cdot \text{m}_{\text{bulk}}^{-3} \cdot \text{sec}^{-1}$), and \dot{R}_j^α represents a source or sink of species j mass in each phase due to radioactive decay or ingrowth (in units of $\text{mol} \cdot \text{m}_{\text{bulk}}^{-3} \cdot \text{sec}^{-1}$).

Transport is assumed to occur only in the liquid fluid phase and not in the gas phase. Furthermore, the aqueous component of species j is the only mobile phase, while the precipitated phase is considered immobile (e.g., $\mathbf{u}^P = 0$). With these assumptions, the governing equation simplifies to,

$$\frac{\partial}{\partial t} \sum_{\alpha} (M_j^\alpha) + \nabla \cdot (\mathbf{u}^A M_j^A) = \sum_{\alpha} (\dot{Q}_j^\alpha) + \sum_{\alpha} (\dot{R}_j^\alpha). \quad (3)$$

The aqueous and precipitated phases of the total mass for each species j are defined as,

$$M_j^A = \emptyset S_{liq} C_j^A, \text{ and} \quad (4)$$

$$M_j^P = \emptyset S_{ppt} C_j^P = f(M_j^A) \quad (5)$$

where S_{liq} and S_{ppt} are the liquid and precipitant saturations (in units of $\text{m}_{liq}^{-3} \cdot \text{m}_{void}^{-3}$ and $\text{m}_{ppt}^{-3} \cdot \text{m}_{void}^{-3}$, respectively) within the pore space \emptyset (in units of $\text{m}_{void}^{-3} \cdot \text{m}_{bulk}^{-3}$), and C_j^A and C_j^P are the aqueous and precipitated phase concentrations, respectively, of each species j (in units of $\text{mol}_j \cdot \text{m}_{liq}^{-3}$ and $\text{mol}_j \cdot \text{m}_{ppt}^{-3}$, respectively).

The aqueous concentration for each species is calculated by first disbursing the total species mass within the pore space for each grid cell. Immediately after, the resulting aqueous concentration for each species is compared to the species solubility limit. If it is below the solubility limit, the aqueous concentration calculated remains unchanged. If instead it is above the solubility limit, the aqueous concentration is set to the species solubility limit and the

87 amount of species mass in excess of the solubility limit is 37
 88 assigned as the precipitated mass.

89 With these definitions, the governing equation expands 138
 90 to,

$$92 \frac{\partial}{\partial t} \sum_{\alpha} (M_j^{\alpha}) + \nabla \cdot (\mathbf{q}^A S_{liq} C_j^A) = \sum_{\alpha} (\dot{Q}_j^{\alpha}) + \sum_{\alpha} (\dot{R}_j^{\alpha}) \quad (6) \quad 141$$

93 where \mathbf{q}^A is the liquid Darcy flux (in units of $m_{liq}^3 \cdot m_{bulk}^{-2}$ 144
 95 sec^{-1}) and has the relationship $\mathbf{q}^A = \mathbf{u}^A \phi$.

96 The generic source/sink term, \dot{Q}_j^{α} , is defined by,

$$98 \dot{Q}_j^{\alpha} = \frac{U_j^{\alpha}}{\nabla} M_j^{\alpha} = \frac{U_j^A}{\nabla} M_j^A = \frac{Q_j^A}{\nabla} S_{liq} C_j^A \quad (7) \quad 147$$

100 where U_j^{α} is a volumetric flow of species j in each phase 149
 101 (in units of $m_{bulk}^3 \cdot \text{sec}^{-1}$). Because the only mobile phase is 150
 102 the aqueous phase, the volumetric flow of each species is 151
 103 defined entirely by U_j^A , the volumetric flow of each species 152
 104 in the aqueous phase. On the right-hand side of Eq. (7), we 153
 105 define the generic source/sink term using Q_j^A , the volumetric 154
 106 Darcy flux (in units of $m_{liq}^3 \cdot \text{sec}^{-1}$), and ∇ , which is a volumetric 155
 107 In this formulation, if the term in a source, C_j^A represents the 156
 108 aqueous phase concentration of species j in the fluid source 157
 109 On the other hand, if the term is a sink, C_j^A represents the 158
 110 aqueous phase concentration of species j in the domain at the 159
 111 location of the sink.

112 The reaction term, \dot{R}_j^{α} , consists of decay and ingrowth of 63
 113 radioactive isotope species. Radioactive decay and ingrowth 64
 114 is defined by the Bateman equations,

$$116 \dot{R}_j^{\alpha} = \frac{\partial M_j^{\alpha}}{\partial t} = -\lambda_j M_j^{\alpha} + \lambda_p M_p^{\alpha} \quad (8) \quad 65$$

117 where the subscript j represents the radioactive isotope 66
 118 species, and the subscript p represents the radioactive parent 67
 119 of species j . The radioactive decay rate (in units of sec^{-1}) is 68
 120 given by λ . Decay and ingrowth is calculated for the total 69
 121 bulk mass, which is then distributed across the aqueous and 70
 122 precipitated phases after the Bateman equations are solved. 71
 123

125 NUMERICAL METHODS FOR THE SOLUTION OF 176 126 THE TRANSPORT GOVERNING EQUATIONS 177

128 The governing equation described by Eq. (1) is a set of 78
 129 equations in space and time. The set of equations is solved by 79
 130 first discretizing them using the finite volume method. The 80
 131 finite volume method uses a volume integral formulation 81
 132 the set of equations with a finite partitioning set of volume 82
 133 to discretize the equations in space and time. The expression 83
 134 in Eq. (6) becomes,

$$136 \int_V \left[\int_t \left[\frac{\partial}{\partial t} \sum_{\alpha} (M_j^{\alpha}) + \nabla \cdot (\mathbf{q}^A S_{liq} C_j^A) \right] dt \right] dV = \quad 184$$

$$\int_V \left[\int_t \left[\sum_{\alpha} (\dot{Q}_j^{\alpha}) + \sum_{\alpha} (\dot{R}_j^{\alpha}) \right] dt \right] dV \quad (9)$$

138 which integrates the governing equation in space and time. 139
 140 Upon taking these integrals and applying the divergence 141
 142 theorem (noting several mathematical details omitted for 143
 144 brevity), the discretized equation becomes,

$$\partial \sum_{\alpha} (M_j^{\alpha}) \nabla + \Delta t \sum_F (\mathbf{q}^A S_{liq} C_j^A \cdot \mathbf{n} A_F) = \Delta t \nabla \left[\sum_{\alpha} (\dot{Q}_j^{\alpha}) + \sum_{\alpha} (\dot{R}_j^{\alpha}) \right] \quad (10)$$

145 where Δt is the time step duration (in units of sec). The 146
 147 summation term, $\sum_F (\mathbf{q}^A S_{liq} C_j^A \cdot \mathbf{n} A_F)$, results from a surface 148
 149 integration on the discretized volume, ∇ . This surface integral 150
 151 is discretized as a sum over a finite number of faces, where \mathbf{n} 152
 153 is the unit normal vector for each face and A_F is the area of 154
 155 each face. In the case of a 3-D structured rectilinear grid, each 156
 157 volume represents a grid cell that has 6 faces.

158 The accumulation term (first term on the left-hand side 159
 160 of Eq. (10)) is discretized in time using a forward difference, 161
 162 and all other terms are taken at the new time level, which is 163
 164 described as an implicit backward Euler discretization 165
 165 method (as opposed to an explicit standard Euler 166
 166 discretization where all other terms are taken at the current 167
 167 time level). The implicit time discretization method has the 168
 168 advantage of numerical stability for any time step taken but 169
 169 requires more computational effort to solve than an explicit 170
 170 method.

171 The Newton-Krylov iteration method is used to solve the 172
 172 discretized governing equations in space and time. First, Eq. 173
 173 (10) is transformed into a residual equation by putting all 174
 174 terms on one side of the equation and setting their sum to 175
 175 zero, as expressed by,

$$176 R(M_j^{\alpha,t+1}) = 0 \quad (11)$$

177 This method states that a generic system of non-linear 178
 178 equations, $f_i(x_1, x_2, \dots, x_n) = 0$, can be expressed as a new 179
 179 system of linear equations, described by,

$$180 f_i(x_1, x_2, \dots, x_n) = \\ 181 f_i(x_1^k, x_2^k, \dots, x_n^k) + \sum_{j=1}^n (x_j^{k+1} - x_j^k) \frac{\partial f_i(x_1^k, x_2^k, \dots, x_n^k)}{\partial x_j} = 0 \quad (12)$$

182 of the form $Ax = b$. The matrix A is called the Jacobian and 183
 183 is the set of partial derivatives of the discretized residual 184
 184 equation (i.e., Eq. (10)) with respect to the primary variable, 185
 185 M_j^{α} . In the NWT Mode, analytical derivatives are defined and 186
 186 computed. The right-hand side, b , is the residual at the k^{th} 187
 187 iteration. Finally, x is the solution vector update, thus giving, 188

$$189 \sum_{j=1}^n \left(\frac{\partial R_i(M_j^{\alpha,t+1})}{\partial M_j^{\alpha}} \right)^k (M_j^{\alpha,t+1}) = -R(M_j^{\alpha,t+1})^k \quad (13)$$

187 The solution is then updated after each iteration
 188 according to,
 189
 190
$$(M_j^{\alpha,t+1})^{k+1} = (M_j^{\alpha,t+1})^k + (\delta M_j^{\alpha,t+1}) \quad (14)$$

 191 and the updated solution is used to evaluate the residual
 192 equation. This process is repeated until the residual value
 193 zero. However, because the residual will never truly be zero
 194 convergence is declared according to a variety of tolerances
 195 on $\delta M_j^{\alpha,t+1}$ and the residual value.
 196
 197 The specific convergence criteria used in NWT Mode
 198 include the infinity norm of the absolute residual value, the
 199 infinity norm of the scaled residual value, and the infinity
 200 norm of the relative solution update. The scaled residual
 201 value is the proportion of the residual relative to the
 202 accumulation term (i.e., first term on the left-hand side of Eq.
 203 (10)), described by
 204
 205
$$\frac{R(M_j^{\alpha,t+1})}{(\Sigma_a(M_j^{\alpha,t}) \forall)}.$$

 206 The relative solution update is the proportion of the solution
 207 update relative to the previous solution, described by
 208
 209
$$\delta M_j^{\alpha,t+1} / M_j^{\alpha,t}.$$

 210
 211 Convergence is defined as meeting the absolute OR scale
 212 residual criteria, AND the relative solution update criteria
 213 each grid cell (e.g., infinity norm).
 214
 215 An uncommon and very advantageous feature in the
 216 NWT Mode of PFLOTRAN is the ability to define
 217 convergence criteria for each individual species. This
 218 is useful when there are large differences (e.g., several orders
 219 of magnitude) in the amount of mass between species, which
 220 may result from differences in the initial inventories,
 221 differences in solubility limits, or differences in the
 222 radioactive decay constants between species. Whether
 223 any of these reasons, when large differences in the
 224 amount of mass between species exists, it may not be
 225 appropriate to assign a single value for the convergence
 226 criteria to all species. Having the capability to define species
 227 specific convergence criteria values allows the numerical
 228 solution to converge with less error.
 229
 230 **NWT MODE IMPROVEMENTS OVER PREVIOUS
 231 SOFTWARE FOR WIPP PA CALCULATIONS**
 232
 233 Several NWT Mode features represent improvements to
 234 WIPP PA calculations, over the previous software, NUTS.
 235 First, the NWT Mode is formulated in terms of the total
 236 bulk concentration (moles per bulk cubic meter), allowing
 237 to accurately accommodate completely dry conditions
 238 without numerical difficulty. Formulations in terms of the
 239 aqueous concentration, (a more common formulation as is the
 240 ease with NUTS), cannot naturally handle completely dry
 241 conditions because the aqueous concentration becomes
 242 undefined, and the system of equations cannot be solved for
 243 the aqueous concentration. In such cases, modification to the
 244 governing equations is done to avoid mathematical
 245 singularity at dry-out conditions.
 246
 247 Second, NWT Mode uses finite volume discretization
 248 and solves the discretized equations with a fully implicit,
 249 backward Euler approach based on Newton-Krylov iteration.
 250 The finite volume discretization conserves mass, by
 251 definition, as opposed to the explicit, finite difference method
 252 that is used by NUTS. Furthermore, using a backward Euler
 253 approach based on Newton-Krylov iteration allows
 254 numerical stability for even large time steps, and can handle
 255 non-linearities in the problem formulation. The uncommon
 256 capability allowing species-specific assignment of
 257 convergence criteria in NWT Mode reduces numerical error
 258 when multiple species with disparate inventories are
 259 simulated and is a state-of-the-art feature that is lacking in
 260 many other transport simulators.
 261
 262 Third, in NWT Mode, the transport process model is
 263 solved sequentially after fluid flow at each time step. This is
 264 an improvement over NUTS in PA calculations, which solves
 265 for transport after 55 years of the flow solution has been
 266 solved. Solving for the transport solution at each flow time
 267 step, as done by NWT Mode, reduces operator-splitting
 268 error, producing a more accurate transport solution.
 269 Moreover, in NWT Mode, the transport process model is
 270 allowed to sub-step the flow solution in time in order to
 271 satisfy convergence criteria and tolerances. This additional
 272 feature reduces time truncation error in the numerical
 273 solution and is automatically activated when the transport
 274 solution cannot be accurately solved at as large of a time step
 275 duration as the flow solution was (due to complex flow
 276 regimes, for example).
 277
 278 Fourth, the NWT Mode can be sequentially coupled to a
 279 new wellbore model (currently under development by the
 280 authors) to additionally simulate transport in a wellbore
 281 emplaced within a larger reservoir. In the previous WIPP PA
 282 software architecture, BRAGFLO explicitly meshes the
 283 wellbore in the computational domain and uses a flared grid
 284 geometry to represent 3-D space on a 2-D grid. In the
 285 development of a new 3-D model for use in PA, explicitly
 286 meshing the borehole in the computational domain quickly
 287 becomes computational intractable due to the large number
 288 of grid cells required to do this with good grid quality. Using
 289 a wellbore model rather than explicitly meshing the wellbore,
 290 therefore, significantly reduces the computational expense.
 291 The flexibility of the NWT Mode to plug into updated
 292 features of the sequentially coupled flow mode, such the new
 293 wellbore model, significantly streamlines the software
 294 development process and allows PA calculations to remain
 295 practical in 3-D.
 296
 297 Finally, because it is part of PFLOTRAN, the NWT
 298 Mode inherits its massively parallel computing capability,

296	which greatly speeds up 3-D simulations. In the previous PA	349	A_F = area of each discretized volume face
297	<u>whichNUTS</u> was limited to <u>serial 2-D</u> computations, <u>serial</u>	350	\mathbf{n} = normal vector of each discretized volume face
298	<u>computations were adequate. However, serial computation</u>	351	$t, \Delta t$ = time, time step
299	<u>must move towards parallelization practically inhibiting its</u>	352	m = meter
300	<u>use</u> for the new 3-D PA model.	353	mol = mole
301		354	sec = second
302	CONCLUSIONS AND FUTURE WORK	355	
303		356	
304	Presented here is the development of the new 3-D	357	
305	transport mode in PFLOTRAN, named the Nuclear Waste	358	
306	Transport (NWT) Mode. Its development was undertaken	359	
307	a result of the proposed replacement of waste panels in the	360	
308	WIPP, which challenges the modeling assumptions inherent	361	
309	in the 2-D flared grid used in PA calculations of flow and	362	
310	transport in and around the repository. The NWT Mode	363	
311	part of a single, efficient, 3-D flow and transport simulator	364	
312	(PFLOTRAN) that incorporates WIPP-specific process	365	
313	models that will eventually replace a portion of the suite of	366	
314	software (i.e., BRAGFLO and NUTS) that is currently	367	
315	utilized for flow and transport in WIPP PA.	368	
316	Besides its role in the updated WIPP PA calculations, the	369	
317	new NWT Mode in PFLOTRAN will also be broadly	370	
318	applicable for the PA community outside of WIPP and has	371	
319	already shown applicability in transport calculations which	372	
320	have been traditionally difficult to solve numerically, due to	373	
321	large non-linearities in the system of equations or complex	374	
322	partially fluid-saturated regimes.	375	
323		376	
324		377	
325		378	
326		379	
327	NOMENCLATURE	380	
328		381	
329	α = phase index (aqueous or precipitated)	382	
330	j = species index	383	
331	p = species' parent index	384	
332	M_j^α = total bulk mass of species j , in phase α	385	
333	M_j^A = total bulk mass of species j , in aqueous phase	386	
334	M_j^P = total bulk mass of species j , in precipitated phase	387	
335	\mathbf{q}^A = liquid Darcy flux	388	ACKNOWLEDGEMENTS
336	\mathbf{u}^α = phase velocity	389	
337	\mathbf{u}^A = aqueous phase velocity	390	Sandia National Laboratories is a multimission laboratory
338	\mathbf{u}^P = precipitated phase velocity, assumed zero	391	managed and operated by National Technology and
339	U_j^α = volumetric flow of species j , in phase α	392	Engineering Solutions of Sandia, LLC., a wholly owned
340	U_j^A = volumetric flow of species j , in aqueous phase	393	subsidiary of Honeywell International, Inc., for the U.S.
341	C_j^A = aqueous phase concentration of species j	394	Department of Energy's National Nuclear Security
342	C_j^P = precipitated phase concentration of species j	395	Administration under contract DE-NA-0003525. This
343	\dot{Q}_j^α = generic source/sink of species j , in phase α	396	research is funded by WIPP programs administered by the
344	\dot{R}_j^α = radioactive source/sink of species j , in phase α	397	Office of Environmental Management (EM) of the U.S.
345	\emptyset = pore space	398	Department of Energy. This paper describes objective
346	S_{liq} = liquid saturation	399	technical results and analysis. Any subjective views or
347	S_{ppt} = precipitant saturation	400	opinions that might be expressed in the paper do not
348	\forall = discretized volume	401	necessarily represent the views of the U.S. Department of
		402	Energy or the United States Government.
		403	SAND2022-XXXX.
		404	

