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Performance assessment of a nuclear waste repository
requires tracking the evolution of thousands of waste
packages over time. While detailed process models for
these packages, such as the Fuel Matrix Degradation
model (FMD), are available, they are too computationally
expensive to be used in a comprehensive full-repository
simulation, especially if multiple samples of the repository
simulation are desired for uncertainty quantification. In
this work, we evaluate the accuracy of two Machine
Learning (ML) methods: a k-Nearest Neighbor regressor
(k-NNr) and an Artificial Neural Network (ANN), to be
used as computationally efficient approximations to the
FMD process model. Preliminary results show that these
ML surrogates can be very accurate, especially if some
information about the internal fuel cask state is included as
a feature in the training data.

I. INTRODUCTION

The Geologic Disposal Safety Assessment (GDSA)
Framework is open source repository simulation software
built around the massively-parallel multi-physics code
PFLOTRAN][1]. An important short-term goal of the
development of the GDSA Framework (pa.sandia.gov) is
to perform probabilistic repository simulations to identify
sources of uncertainty to help prioritize future R&D. To
achieve this short-term goal with current computer
resources, developers must consider ways to include the
effects of expensive process models in total system
simulations.

High fidelity prediction of waste package and waste
form degradation processes for thousands of waste
packages in a probabilistic repository performance
assessment calculation is expensive. With thousands of
waste packages, thousands of time steps, and hundreds of
realizations in a simulation to allow for uncertainty
quantification, these process models may need to be called
a billion times per simulation.

One way to reduce computational expense is to
develop response surface surrogate models that can rapidly
emulate the mechanistic process models. An ideal response
surface surrogate model runs orders of magnitude faster
than its parent mechanistic model and provides outputs

identical to those of the mechanistic model within a
specified range of the model inputs.

Over the past few years, a team of modelers and
mathematicians at Sandia National Laboratories has been
developing surrogate models for the UO> Flux that is
predicted by the Fuel Matrix Degradation (FMD) process
model[2]. The FMD model has been coupled with
PFLOTRAN]3], but the coupled model runs too slowly for
a set of probabilistic repository-scale simulations. The
surrogate modeling work has examined Machine Learning
(ML) approaches such as tabulation with tree-based lookup
methods, and artificial neural networks. A key question for
obtaining good accuracy with the surrogate models is the
choice of features to train the surrogates on, as well as the
sampling approaches used to generate training data.
Section II in this paper describes the FMD process model,
and Section III discusses our general approach for
surrogate modeling along with the process for generating
training data. Section IV then shows some results from
surrogates that do not use detailed information about the
internal state of the waste packages and waste form.
Section V explores the use of surrogate models that
incorporate features internal to the fuel cask, along with
preliminary results.

I1. FUEL DISSOLUTION PROCESS MODEL

The FMD model is a mechanistic spent fuel
dissolution model coded in Matlab and developed at
Argonne National Laboratory and Pacific Northwest
National Laboratory. The model calculates spent fuel
dissolution rates as a function of radiolysis, alteration layer
growth, diffusion of reactants through the alteration layer,
temperature, and interfacial corrosion potential[4]. It
employs a one-dimensional (1D) reactive transport model
to simulate diffusion and chemical reactions across this
layer over time. The 1D domain, depicted in Fig. 1, extends
0.05 m from the fuel surface to the bulk water. It is divided
into as many as 100 cells with increasing length toward the
bulk water boundary cell.

To couple the FMD model with PFLOTRAN, a
“coupled” FMD model was coded in Fortran. At each time
step, PFLOTRAN calls the coupled FMD model to obtain
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a new dissolution rate. Coupling required PFLOTRAN to
keep track of the 1D chemical profiles across the domain
from the previous time step. It also required relevant inputs
from the main PFLOTRAN simulation, such as
temperature, time, and environmental concentrations in the
boundary cell. Dose rate is calculated in the coupled FMD
model from time and burnup. A full list of FMD model
inputs and outputs available for surrogate modeling is
presented in Table I.
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Fig. 1. FMD model domain.

TABLE I. Inputs/Outputs of Coupled FMD Model

Available Inputs Outputs

e Initial concentration profiles e Final
across 1D corrosion/water concentration
layer (UOz(s), UOs(s), UO4(s), profiles across 1D
H>0,, UO2?", UCOs*, UOz, corrosion/water

COs%, 02, Fe*, and Hz) layer
e Initial corrosion layer thickness | ® Final corrosion

e Dose rate at fuel surface layer thickness
(= f (time, burnup)) e Fuel dissolution
e Temperature rate (UOz flux)

e Time and time step length

e Environmental concentrations
(COs%, 02, Fe?!, and H)

The coupled Fortran FMD model was tested on a
problem involving a two-dimensional flow field containing
4 rows of 13 breached spent fuel waste packages. The
model successfully simulated fuel dissolution for each of
the waste packages over 100 time steps[3]. Of the 45
minutes of computational time required to run the
simulation, 30 minutes were used calculating the fuel
dissolution rates in the coupled FMD model.

II1. SURROGATE MODELING

It is often useful to construct a surrogate model to use
in uncertainty and sensitivity analysis of a computational
physics model when it is computationally demanding. A
surrogate model (sometimes called meta-model, emulator,
or response surface model) is an inexpensive input-to-
output mapping that replaces a simulation code. Once
constructed, this meta-model is relatively inexpensive to
evaluate so it is often used as a surrogate for the physics
model in uncertainty propagation, sensitivity analysis, or
optimization problems that may require thousands to
millions of function evaluations[5].

There are many different types of surrogate models,
including neural networks [6,7], k-Nearest Neighbor
regression[7], and polynomial chaos expansions[8,9].
Another popular approach in the literature is to develop an
emulator that is a stationary smooth Gaussian
process[10,11]. The popularity of Gaussian processes is
due to their ability to model complicated functional forms
and to provide an uncertainty estimate of their predicted
response value at a new input point. There are many good
overview articles that compare various meta-model
strategies. ~ Various  smoothing  predictors  and
nonparametric regression approaches are compared
elsewhere[5,11,12]. Simpson et al. provides an excellent
overview not just of various statistical meta-model
methods but also approaches that use low-fidelity models
as surrogates for high-fidelity models[5]. Haftka and his
students developed an approach that uses ensembles of
emulators or hybrid emulators[13].

Two ML surrogate modeling approaches are used in
this work to predict the UO:z flux resulting from fuel
degradation: A  k-nearest-neighbors surrogate model
(Section I1I.B) and an Artificial Neural Network (Section
III.C). The former interpolates between points in a high-
dimensional lookup table generated by sampling the FMD
model. The latter fits a nonlinear functional representation
to the FMD model data. Both approaches require a
sufficient amount of training data from the FMD model, as
discussed in Section IIL.A.

III.A. Training Data

We used a standalone MATLAB implementation of
the FMD process model to generate training data by
randomly sampling the inputs to the model. The training
data itself can be very large. For example, we may have
millions of samples of FMD, where each sample involves
a multi-dimensional vector sample of inputs such as the
environmental concentrations, temperature, burnup, etc
(the left-hand quantities in Table I). The output is also
extensive, since each FMD run involves a hundred
timesteps with lots of information about the fuel cask state
reported at every time step (e.g., the right-hand quantities
in Table I). Note that in this work, we focus on predicting
the fuel dissolution rate (UO:z flux), although the other two
output quantities could be treated with a surrogate in
similar manner.

A Latin hypercube sampling (LHS) study was
performed to generate training and validation data for
regression from the standalone FMD process model. LHS
is a stratified sampling technique that generates “well-
spaced” samples; it typically gives lower variance
statistical estimators than plain Monte Carlo sampling[ 14].
The six-dimensional sample space contained the
parameters initial temperature, burnup, and the
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environmental concentrations of CO3?>, Oz, Fe?*, and Ha.
The probability distributions for each parameter are given
in Table II.

TABLE II. Input Parameters and Their Distributions

Parameter Distribution Min. Max.
Init. Temp. (K) Uniform 300 400
Burnup (Gwd/MTU) Uniform 40 65
Env. COs> (mol/m?) Log-uniform 103 2x1072
Env. O, (mol/m®) Log-uniform 107 10°
Env. Fe?" (mol/m?) Log-uniform 103 102
Env. H, (mol/m®) Log-uniform 107 2x1072

The temporal discretization in each problem consists
of 101 logarithmically-spaced (base 10) points from 0 to
10° years. Some FMD runs need to be filtered out if they
either get stuck in an infinite loops and never finish or if
they show unphysical results, such as the UO: surface flux
stagnating after 10* years, or the Corrosion Layer
Thickness (CLT) growing beyond the computational
domain of 0.05m.

To assess the accuracy of the models for a specific
training data size, we analyzed the normalized root mean
squared error (nrmse), which is computed over the data set
as:

1 2
Jﬁ Z?’:l(J’pred,i_J’true,i)
nrmse =

()

1N
N Ziz1 Vtrue,i

Where N is the total number of data points. In other words,
the nrmse is the root mean squared error normalized by the
mean of the true data. Another metric is the mean absolute
percentage error (mape), which is computed as:

Ypred,i~Ytrue,i

mape = %Z’i"zl x 100 #))

Ytrue,i

The mape error, due to its relative nature, does a good job
of treating the approximations in all quantities, large or
small, with equal importance. On the other hand, the mape
can be sensitive to numerical noise, for example when
reasonable errors get divided by very small quantities in
absolute value.  Also, for some applications, the
approximation of the larger values is the most important
criterion. For these situations, the nrmse is a good overall
measure of goodness. For a data set where the Quantity of
Interest (Qol) spans many orders of magnitude, it is good
to consider both metrics.

IIL.B. k-Nearest Neighbor Regression

The k-Nearest Neighbors regressor (kKNNr)[7] is a
supervised, non-parametric machine learning method that
tabulates data points inside of a domain X with labels Y.
The label for a point within the domain but not in the

“table” is obtained as a weighted average of the labels of

the k nearest neighbors of this new point, where k > 1 is

fixed. The definition of nearest depends on the metric

function one uses, though a typical choice is the
1

Minkowski metric (Y& ,|x; — y;|P)? , with p > 1. The
case of p = 2is the popular Euclidean metric, which is
used in this work. For efficient look-up in high-
dimensional data sets, a K-D Tree tabulation method is
used[6]. The inverse distances from the nearest-neighbor
table points to the query point are used as the weight in the
interpolation, so that points further away from the query
point have less influence than more nearby points.

One of the attractive features of kNNr is that it makes
predictions based on local information only, and therefore
does not require global smoothness over the input space.
As each prediction is a weighted average of known table
points, the approach is also highly interpretable. On the
other hand, the approach requires a sufficiently dense table
to get good predictive accuracy, and the cost of table look-
ups increases as the table density increases.

For model development and metaparameter tuning, we
employed the kNNr implementation from the Python
Scikit-Learn module[6]. For coupling to PFLOTRAN
reservoir simulations, we relied on the open source
FORTRAN code KDTREE 2 [15].

II1.C. Artificial Neural Network

Artificial Neural Network (ANN) models are
commonly employed by the machine learning community
for regression and classification problems. They can be
described as intricate networks of “artificial neurons” that
are essentially weighted combinations of (usually simple)
nonlinear functions. One motivation for the development
of neural networks [6,7,10] was to create a regression
approach for complex functions that avoids the
combinatorial growth of the feature space that occurs in
polynomial regression models.

ANN can be more accurate than kNNr using fewer
training data as its functional representation helps to
interpolate in areas where fewer training data are available.
However, ANN models are not as readily interpretable as
kNNr models, and care must be taken to avoid overfitting.

The ANN surrogate was developed in Python using
the Tensorflow/Keras module[16]. A feed-forward neural
network structure was selected with the popular rectified
linear unit (ReLU) activation function. All training and
metaparameter tuning was done in Python. For coupling to
PFLOTRAN reservoir simulations, a Fortran ANN
evaluator was written specifically for the selected network
configuration. This evaluator reads in the ANN weights
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that were determined offline in the Python training and
tuning scripts.

IV. SURROGATES NOT RELYING ON DETAILED
INTERNAL STATE INFORMATION

While the FMD model tracks detailed information
about the internal state of the fuel cask over time, as listed
in Table I, most of this information is not readily available
when a surrogate model is called in a reservoir simulation.
As such, our first approach to surrogate modeling considers
only the following 6 features:

*  Dose rate at fuel surface (= f (time, burnup))

*  Temperature

«  Environmental concentrations (COs*, Oz, Fe?*,
and H»)

These features are either set by the environment
(temperature and environmental concentrations) or can be
readily computed from global information (dose rate).

As covered in detail in [17], surrogates using these
features show good agreement with the process model
predictions of the UO: fluxes.

TABLE III. Error metrics for kNNr and ANN surrogates
on testing data for the case where no detailed internal fuel
cask information is used.

Surrogate nrmse mape
KNNr 0.48 44%
ANN 0.52 25%

Table III shows the nrmse and mape errors on the UO2
fluxes predicted by the kNNr and ANN surrogates
compared to FMD simulations on testing data. In this case,
the surrogate models were trained based on 400,000 FMD
Matlab runs. The kNNr model used dose rate, temperature,
and the concentrations of CO3? and H: as features. The
kNNrr table contained 2.28 million samples and 80 Nearest
Neighbors were used for interpolation. The ANN model
used two hidden layers with 64 nodes each for a total of
4673 parameters, and was trained on the same data set
using dose rate, temperature, and all 4 environmental
concentrations CO3>, Oz, Fe?*, and H; as features.

A demonstration on a full-scale shale repository
reference case simulation showed that the ANN and kNNr
surrogate models enable accounting for more detailed
FMD dynamics than when a Fractional Dissolution Rate
approximation is used, while keeping the computational
cost of reservoir simulations manageable [17].

V. SURROGATES USING CORROSION LAYER
THICKNESS AS A FEATURE

V.A. Approach

While the results in [17] are encouraging, the accuracy
of the surrogates is not superb. In this paper, we explore the
potential of getting more accurate surrogate models by
incorporating additional information about the internal fuel
cask state. One variable that captures a lot of information
about the amount of waste form degradation is the
Corrosion Layer Thickness (CLT). Since this feature is not
readily available without running a detailed FMD process
model, a dual surrogate model approach is followed.

A first surrogate model predicts the CLT at the current
time, using the CLT at the previous time step and the time
step size as features, in addition to the features used in
Section IV. A second surrogate predicts the UOx flux, using
this same expanded feature set. After advancing to the next
time step, the CLT predicted by the surrogate in the
previous time step becomes part of the features for the next
time step.

V.B. Preliminary Results

This dual surrogate approach was implemented for the
kNNr surrogate, using dose rate, temperature, and the
concentrations of CO3* and Hz along with CLT at the
previous time step and the time step size as features. The
surrogate was trained using a data set of 1 million FMD
Matlab runs sampled from the distributions listed in Table
II. After removing unphysical runs, 15% of the data was
split off as validation data and 10% was split off as testing
data, resulting in about 9.4 million validation data points,
6.3 million testing data points, and 47 million training data
points. Following [17], the training data was downsampled
by randomly selecting a number of samples from each
FMD time trajectory.

Figures 2 — 5 show preliminary results that explore the
choice of kKNNr metaparameters (amount of training data
and the number of Nearest Neighbors, NN) for the CLT
and UOz Flux predictions. In all of these experiments, the
training data was subsampled to 50 time samples per run.
The validation data was used for computing the error
metrics. As the CLT is initialized at a very small value on
the order of 10"" micrometer, the presence of some very
small CLT values makes the computation of the regular
mape error numerically unstable. To mitigate this effect,
we defined a modified “floored” mape error metric, which
uses a value of 10 in the mape denominator if the CLT at
that point is less than 10 um. This effectively removes the
impact of division by very small CLT values from the
computation. This modified mape metric here is indicated
as mape_f in the figures.
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Fig. 2. The nrmse metric for prediction of the CLT as a
function of the amount of training samples for different
values of the number of Nearest Neighbors (NN) used.
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Fig. 3. The mape f metric for prediction of the CLT as a
function of the amount of training samples for different
values of the number of Nearest Neighbors (NN) used.
Errors are on the order of 1 —2 %.

Figures 2 and 3 show that the incorporation of the CLT
at the previous time step along with the time step size as
features, allows a very accurate prediction of the CLT, with
mape errors down to about 1 — 2% on the validation data.
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Fig. 4. The nrmse metric for prediction of the UO: flux as
a function of the amount of training samples for different
values of the number of Nearest Neighbors (NN) used.

-|- . . - #NN=8

4x10* # NN =12

—F— #NN=16
—F— #NN=20

I

3 %100

U02 Flux mape_f [%]

0.25 050 0.75 1.00 125 150 175 2.00
# Training Samples 1e7

Fig. 5. The mape metric for prediction of the UO2 flux as
a function of the amount of training samples for different
values of the number of Nearest Neighbors (NN) used.
Given enough data points, the mape error is less than 30 %.

Figures 4 and 5 similarly show nice convergence of
the kKNNr surrogate approximation error in the UOz flux as
more training data is provided.

Based on the trends in this preliminary tuning of the
kNNr meta parameters, both the CLT and UO: flux are best
predicted using about 8 — 12 nearest neighbors with as
much training data as possible. Note that the number of
nearest neighbors used here is much lower than the 80
nearest neighbors used in Section IV. As such, the addition
of the CLT as a feature will allow for faster table lookups,
and may also be more robust as there is less danger of
grabbing points that are too far away when fewer neighbors
are used in the interpolation. Based on these tuning results,
a kNNr configuration of 10 nearest neighbors using all
available training data (all 23 million samples from the data
set that was downsampled to 50 samples per FMD process
model run) was selected to predict the testing data. This
testing data has not been used in any of the training and
tuning of the kNNTr surrogate.

Figures 6 and 7 below compare the kNNr predictions
of'the CLT and UO: flux to the testing data for 50 randomly
sampled trajectories of the FMD process model. Note that
in this comparison, each data point in the time trajectories
was predicted on its own, using the features provided by
the testing data. In a real case scenario, the true CLT value
at the previous time step would not be available and would
need to be approximated by the same surrogate. As such,
errors in the surrogate approximations in previous time
steps may result in compounding errors over time. The
analysis shown here is still useful as it shows where such
errors are most likely to originate.
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Fig. 6. Comparison of the True and kNNr prediction of the
CLT for 50 randomly selected runs in the testing data.
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Fig. 7. Comparison of the True and kNNr prediction of the
UO:z flux for 50 randomly selected runs in the testing data.

Aside from some deviations early in time, the kKNNr
predictions of the CLT in Figure 6 are very close to the true
values in the testing data. This graph also illustrates the
very wide range in CLT values. It is believed that the errors
in the CLT predictions at early time, when the CLT is often
very small, are the ones that tend to inflate the mape error
if no floor value is applied.

The predictions of the UO: fluxes in Figure 7 show
good agreement with the test data, although the agreement
is not as good as for the CLT predictions. As observed also
in [17], the kNNr prediction is noisy as it is a local
prediction, drawing information only from 10 nearest
neighbors to each query point in the training sample space.

Overall, with this KNNr configuration of 10 nearest
neighbors and 23 million training samples, the prediction
of the UOz flux in the testing data shows an nrmse error of
0.11, and a mape error of 29%. Even without extensive
tuning of the KNNr metaparameters, this is a significant
improvement from the nrmse error of 0.48 and mape error

of 44% reported in Table III for the case where no CLT
information was used.

V.C. Ongoing Work

We are continuing to tune the KNNr meta parameters
in order to optimize both the accuracy and speed of the
predictions. In this process, we are also investigating the
cause of the large (in relative sense) deviations in the CLT
predictions that show up at early times. Besides kKNNr, we
will also train Artificial Neural Networks (ANNs) using the
same feature set. As ANNs use a functional representation
rather than local approximations, the predictions by the
ANN surrogates are likely to be smoother than the kNNr
predictions when looking at time trajectories. The resulting
kNNr and ANN configurations will then be employed to
full scale nuclear waste performance assessment
simulations

VI. CONCLUSIONS

Two machine learning surrogate models are under
development to rapidly emulate the effects of the Fuel
Matrix Degradation (FMD) model in the GDSA
Framework. One is a k-Nearest Neighbors regressor
(kNNr) method that operates on a lookup table, and the
other is an Artificial Neural Network. Both approaches
have a high degree of accuracy, provided that enough
training data is available with features that are informative
of the UO> flux that results from the fuel degradation.

While earlier work [17], used only features that do not
require detailed information about the internal state of the
fuel cask, the current work explored the use of the
Corrosion Layer Thickness (CLT). While this feature
would need to be predicted along with the UO: flux at
every time step in a reservoir simulation, the preliminary
results in this work with the kNNr surrogate show that the
CLT is very informative of the UO: flux. Including CLT as
a feature therefore results in dramatically better accuracy.
Ongoing work is incorporating the CLT as a feature in the
ANN surrogate, and further refining the sampling schemes
and meta-parameter tuning processes before employing
this approach in realistic, full scale respository simulations.

The aim of these surrogate models is to enable the
GDSA Framework to simulate spent fuel dissolution for
each individual breached spent fuel waste package in a
probabilistic repository simulation. Having the ability to
emulate spent fuel dissolution in probabilistic PA
simulations will have the added capability of allowing
uncertainties in spent fuel dissolution to be propagated and
sensitivities in FMD inputs to be quantified and ranked
against other inputs.
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