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Performance assessment of a nuclear waste repository 
requires tracking the evolution of thousands of waste 
packages over time. While detailed process models for 
these packages, such as the Fuel Matrix Degradation 
model (FMD), are available, they are too computationally 
expensive to be used in a comprehensive full-repository 
simulation, especially if multiple samples of the repository 
simulation are desired for uncertainty quantification. In 
this work, we evaluate the accuracy of two Machine 
Learning (ML) methods: a k-Nearest Neighbor regressor 
(k-NNr) and an Artificial Neural Network (ANN), to be 
used as computationally efficient approximations to the 
FMD process model. Preliminary results show that these 
ML surrogates can be very accurate, especially if some 
information about the internal fuel cask state is included as 
a feature in the training data. 
 
I. INTRODUCTION 
 

The Geologic Disposal Safety Assessment (GDSA) 
Framework is open source repository simulation software 
built around the massively-parallel multi-physics code 
PFLOTRAN[1]. An important short-term goal of the 
development of the GDSA Framework (pa.sandia.gov) is 
to perform probabilistic repository simulations to identify 
sources of uncertainty to help prioritize future R&D. To 
achieve this short-term goal with current computer 
resources, developers must consider ways to include the 
effects of expensive process models in total system 
simulations.  

 
High fidelity prediction of waste package and waste 

form degradation processes for thousands of waste 
packages in a probabilistic repository performance 
assessment calculation is expensive. With thousands of 
waste packages, thousands of time steps, and hundreds of 
realizations in a simulation to allow for uncertainty 
quantification, these process models may need to be called 
a billion times per simulation.  

 
One way to reduce computational expense is to 

develop response surface surrogate models that can rapidly 
emulate the mechanistic process models. An ideal response 
surface surrogate model runs orders of magnitude faster 
than its parent mechanistic model and provides outputs 

identical to those of the mechanistic model within a 
specified range of the model inputs. 

 
Over the past few years, a team of modelers and 

mathematicians at Sandia National Laboratories has been 
developing surrogate models for the UO2 Flux that is 
predicted by the Fuel Matrix Degradation (FMD) process 
model[2]. The FMD model has been coupled with 
PFLOTRAN[3], but the coupled model runs too slowly for 
a set of probabilistic repository-scale simulations. The 
surrogate modeling work has examined Machine Learning 
(ML) approaches such as tabulation with tree-based lookup 
methods, and artificial neural networks. A key question for 
obtaining good accuracy with the surrogate models is the 
choice of features to train the surrogates on, as well as the 
sampling approaches used to generate training data. 
Section II in this paper describes the FMD process model, 
and Section III discusses our general approach for 
surrogate modeling along with the process for generating 
training data. Section IV then shows some results from 
surrogates that do not use detailed information about the 
internal state of the waste packages and waste form. 
Section V explores the use of surrogate models that 
incorporate features internal to the fuel cask, along with 
preliminary results. 

 
II. FUEL DISSOLUTION PROCESS MODEL 
 

The FMD model is a mechanistic spent fuel 
dissolution model coded in Matlab and developed at 
Argonne National Laboratory and Pacific Northwest 
National Laboratory. The model calculates spent fuel 
dissolution rates as a function of radiolysis, alteration layer 
growth, diffusion of reactants through the alteration layer, 
temperature, and interfacial corrosion potential[4]. It 
employs a one-dimensional (1D) reactive transport model 
to simulate diffusion and chemical reactions across this 
layer over time. The 1D domain, depicted in Fig. 1, extends 
0.05 m from the fuel surface to the bulk water. It is divided 
into as many as 100 cells with increasing length toward the 
bulk water boundary cell. 

 
To couple the FMD model with PFLOTRAN, a 

“coupled” FMD model was coded in Fortran. At each time 
step, PFLOTRAN calls the coupled FMD model to obtain 
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a new dissolution rate. Coupling required PFLOTRAN to 
keep track of the 1D chemical profiles across the domain 
from the previous time step. It also required relevant inputs 
from the main PFLOTRAN simulation, such as 
temperature, time, and environmental concentrations in the 
boundary cell. Dose rate is calculated in the coupled FMD 
model from time and burnup. A full list of FMD model 
inputs and outputs available for surrogate modeling is 
presented in Table I. 

 
 

 
Fig. 1. FMD model domain. 

 
TABLE I. Inputs/Outputs of Coupled FMD Model 
Available Inputs Outputs 
• Initial concentration profiles 

across 1D corrosion/water 
layer (UO2(s), UO3(s), UO4(s), 
H2O2, UO22+, UCO32-, UO2, 
CO32-, O2, Fe2+, and H2) 

• Initial corrosion layer thickness 
• Dose rate at fuel surface          

(= f (time, burnup)) 
• Temperature 
• Time and time step length 
• Environmental concentrations 

(CO32-, O2, Fe2+, and H2) 

• Final 
concentration 
profiles across 1D 
corrosion/water 
layer 

• Final corrosion 
layer thickness 

• Fuel dissolution 
rate (UO2 flux) 

 
The coupled Fortran FMD model was tested on a 

problem involving a two-dimensional flow field containing 
4 rows of 13 breached spent fuel waste packages. The 
model successfully simulated fuel dissolution for each of 
the waste packages over 100 time steps[3]. Of the 45 
minutes of computational time required to run the 
simulation, 30 minutes were used calculating the fuel 
dissolution rates in the coupled FMD model. 
 
III. SURROGATE MODELING 
 

It is often useful to construct a surrogate model to use 
in uncertainty and sensitivity analysis of a computational 
physics model when it is computationally demanding. A 
surrogate model (sometimes called meta-model, emulator, 
or response surface model) is an inexpensive input-to-
output mapping that replaces a simulation code. Once 
constructed, this meta-model is relatively inexpensive to 
evaluate so it is often used as a surrogate for the physics 
model in uncertainty propagation, sensitivity analysis, or 
optimization problems that may require thousands to 
millions of function evaluations[5].  
 

There are many different types of surrogate models, 
including neural networks [6,7], k-Nearest Neighbor 
regression[7], and polynomial chaos expansions[8,9]. 
Another popular approach in the literature is to develop an 
emulator that is a stationary smooth Gaussian 
process[10,11]. The popularity of Gaussian processes is 
due to their ability to model complicated functional forms 
and to provide an uncertainty estimate of their predicted 
response value at a new input point. There are many good 
overview articles that compare various meta-model 
strategies. Various smoothing predictors and 
nonparametric regression approaches are compared 
elsewhere[5,11,12]. Simpson et al. provides an excellent 
overview not just of various statistical meta-model 
methods but also approaches that use low-fidelity models 
as surrogates for high-fidelity models[5]. Haftka and his 
students developed an approach that uses ensembles of 
emulators or hybrid emulators[13].  

 
Two ML surrogate modeling approaches are used in 

this work to predict the UO2 flux resulting from fuel 
degradation: A  k-nearest-neighbors surrogate model 
(Section III.B) and an Artificial Neural Network (Section 
III.C). The former interpolates between points in a high-
dimensional lookup table generated by sampling the FMD 
model. The latter fits a nonlinear functional representation 
to the FMD model data. Both approaches require a 
sufficient amount of training data from the FMD model, as 
discussed in Section III.A. 

 
III.A. Training Data 

 
We used a standalone MATLAB implementation of 

the FMD process model to generate training data by 
randomly sampling the inputs to the model. The training 
data itself can be very large. For example, we may have 
millions of samples of FMD, where each sample involves 
a multi-dimensional vector sample of inputs such as the 
environmental concentrations, temperature, burnup, etc 
(the left-hand quantities in Table I). The output is also 
extensive, since each FMD run involves a hundred 
timesteps with lots of information about the fuel cask state 
reported at every time step (e.g., the right-hand quantities 
in Table I). Note that in this work, we focus on predicting 
the fuel dissolution rate (UO2 flux), although the other two 
output quantities could be treated with a surrogate in 
similar manner. 
 

A Latin hypercube sampling (LHS) study was 
performed to generate training and validation data for 
regression from the standalone FMD process model. LHS 
is a stratified sampling technique that generates “well-
spaced” samples; it typically gives lower variance 
statistical estimators than plain Monte Carlo sampling[14]. 
The six-dimensional sample space contained the 
parameters initial temperature, burnup, and the 
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environmental concentrations of  CO32-, O2, Fe2+, and H2. 
The probability distributions for each parameter are given 
in Table II. 

 
TABLE II. Input Parameters and Their Distributions 

Parameter Distribution Min. Max. 
Init. Temp. (K) Uniform 300 400 
Burnup (Gwd/MTU) Uniform 40 65 
Env. CO3

2- (mol/m3) Log-uniform 10-3 2x10-2 

Env. O2 (mol/m3) Log-uniform 10-7 10-5 
Env. Fe2+ (mol/m3) Log-uniform 10-3 10-2 
Env. H2 (mol/m3) Log-uniform 10-5 2x10-2 

 
The temporal discretization in each problem consists 

of 101 logarithmically-spaced (base 10) points from 0 to 
105 years. Some FMD runs need to be filtered out if they 
either get stuck in an infinite loops and never finish or if 
they show unphysical results, such as the UO2 surface flux 
stagnating after 104 years, or the Corrosion Layer 
Thickness (CLT) growing beyond the computational 
domain of 0.05m.  
 

To assess the accuracy of the models for a specific 
training data size, we analyzed the normalized root mean 
squared error (nrmse), which is computed over the data set 
as:  
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Where N is the total number of data points. In other words, 
the nrmse is the root mean squared error normalized by the 
mean of the true data.  Another metric is the mean absolute 
percentage error (mape), which is computed as: 
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The mape error, due to its relative nature, does a good job 
of treating the approximations in all quantities, large or 
small, with equal importance. On the other hand, the mape 
can be sensitive to numerical noise, for example when 
reasonable errors get divided by very small quantities in 
absolute value.  Also, for some applications, the 
approximation of the larger values is the most important 
criterion. For these situations, the nrmse is a good overall 
measure of goodness. For a data set where the Quantity of 
Interest (QoI) spans many orders of magnitude, it is good 
to consider both metrics. 
 
III.B. k-Nearest Neighbor Regression 

 
The k-Nearest Neighbors regressor (kNNr)[7] is a 

supervised, non-parametric machine learning method that 
tabulates data points inside of a domain X with labels Y. 
The label for a point within the domain but not in the 

“table” is obtained as a weighted average of the labels of 
the 𝑘 nearest neighbors of this new point, where 𝑘 ≥ 1 is 
fixed. The definition of nearest depends on the metric 
function one uses, though a typical choice is the 

Minkowski metric (∑ |𝑥) − 𝑦)|+,
)*' )	

!
#		,  with 𝑝 ≥ 1 . The 

case of 𝑝 = 2is the popular Euclidean metric, which is 
used in this work. For efficient look-up in high-
dimensional data sets, a K-D Tree tabulation method is 
used[6]. The inverse distances from the nearest-neighbor 
table points to the query point are used as the weight in the 
interpolation, so that points further away from the query 
point have less influence than more nearby points. 
 

One of the attractive features of kNNr is that it makes 
predictions based on local information only, and therefore 
does not require global smoothness over the input space.  
As each prediction is a weighted average of known table 
points, the approach is also highly interpretable. On the 
other hand, the approach requires a sufficiently dense table 
to get good predictive accuracy, and the cost of table look-
ups increases as the table density increases. 

 
For model development and metaparameter tuning, we 

employed the kNNr implementation from the Python 
Scikit-Learn module[6]. For coupling to PFLOTRAN 
reservoir simulations, we relied on the open source 
FORTRAN code KDTREE 2 [15]. 

 
III.C. Artificial Neural Network 

 
Artificial Neural Network (ANN) models are 

commonly employed by the machine learning community 
for regression and classification problems. They can be 
described as intricate networks of “artificial neurons” that 
are essentially weighted combinations of (usually simple) 
nonlinear functions. One motivation for the development 
of neural networks [6,7,10] was to create a regression 
approach for complex functions that avoids the 
combinatorial growth of the feature space that occurs in 
polynomial regression models. 

 
ANN can be more accurate than kNNr using fewer 

training data as its functional representation helps to 
interpolate in areas where fewer training data are available. 
However, ANN models are not as readily interpretable as 
kNNr models, and care must be taken to avoid overfitting. 

 
The ANN surrogate was developed in Python using 

the Tensorflow/Keras module[16]. A feed-forward neural 
network structure was selected with the popular rectified 
linear unit (ReLU) activation function. All training and 
metaparameter tuning was done in Python. For coupling to 
PFLOTRAN reservoir simulations, a Fortran ANN 
evaluator was written specifically for the selected network 
configuration. This evaluator reads in the ANN weights 
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that were determined offline in the Python training and 
tuning scripts. 
 
IV. SURROGATES NOT RELYING ON DETAILED 
INTERNAL STATE INFORMATION 
 

While the FMD model tracks detailed information 
about the internal state of the fuel cask over time, as listed 
in Table I, most of this information is not readily available 
when a surrogate model is called in a reservoir simulation. 
As such, our first approach to surrogate modeling considers 
only the following 6 features:  

• Dose rate at fuel surface (= f (time, burnup)) 
• Temperature 
• Environmental concentrations (CO32-, O2, Fe2+, 

and H2) 
These features are either set by the environment 

(temperature and environmental concentrations) or can be 
readily computed from global information (dose rate). 

 
As covered in detail in [17], surrogates using these 

features show good agreement with the process model 
predictions of the UO2 fluxes. 

 
TABLE III.  Error metrics for kNNr and ANN surrogates 
on testing data for the case where no detailed internal fuel 
cask information is used. 

Surrogate nrmse mape 
kNNr 0.48 44% 
ANN 0.52 25% 
 
Table III shows the nrmse and mape errors on the UO2 

fluxes predicted by the kNNr and ANN surrogates 
compared to FMD simulations on testing data. In this case, 
the surrogate models were trained based on 400,000 FMD 
Matlab runs. The kNNr model used dose rate, temperature, 
and the concentrations of CO32- and H2 as features. The 
kNNr table contained 2.28 million samples and 80 Nearest 
Neighbors were used for interpolation. The ANN model 
used two hidden layers with 64 nodes each for a total of 
4673 parameters, and was trained on the same data set 
using dose rate, temperature, and all 4 environmental 
concentrations CO32-, O2, Fe2+, and H2 as features. 

 
A demonstration on a full-scale shale repository 

reference case simulation showed that the ANN and kNNr 
surrogate models enable accounting for more detailed 
FMD dynamics than when a Fractional Dissolution Rate 
approximation is used, while keeping the computational 
cost of reservoir simulations manageable [17]. 

V. SURROGATES USING CORROSION LAYER 
THICKNESS AS A FEATURE 

 
V.A. Approach  
 

While the results in [17] are encouraging, the accuracy 
of the surrogates is not superb. In this paper, we explore the 
potential of getting more accurate surrogate models by 
incorporating additional information about the internal fuel 
cask state. One variable that captures a lot of information 
about the amount of waste form degradation is the 
Corrosion Layer Thickness (CLT). Since this feature is not 
readily available without running a detailed FMD process 
model, a dual surrogate model approach is followed.  

 
A first surrogate model predicts the CLT at the current 

time, using the CLT at the previous time step and the time 
step size as features, in addition to the features used in 
Section IV. A second surrogate predicts the UO2 flux, using 
this same expanded feature set. After advancing to the next 
time step, the CLT predicted by the surrogate in the 
previous time step becomes part of the features for the next 
time step. 
 
V.B. Preliminary Results 
 

This dual surrogate approach was implemented for the 
kNNr surrogate, using dose rate, temperature, and the 
concentrations of CO32- and H2 along with CLT at the 
previous time step and the time step size as features. The 
surrogate was trained using a data set of 1 million FMD 
Matlab runs sampled from the distributions listed in Table 
II. After removing unphysical runs, 15% of the data was 
split off as validation data and 10% was split off as testing 
data, resulting in about 9.4 million validation data points, 
6.3 million testing data points, and 47 million training data 
points. Following [17], the training data was downsampled 
by randomly selecting a number of samples from each 
FMD time trajectory. 

 
Figures 2 – 5 show preliminary results that explore the 

choice of kNNr metaparameters (amount of training data 
and the number of Nearest Neighbors, NN) for the CLT 
and UO2 Flux predictions. In all of these experiments, the 
training data was subsampled to 50 time samples per run. 
The validation data was used for computing the error 
metrics. As the CLT is initialized at a very small value on 
the order of 10-19 micrometer, the presence of some very 
small CLT values makes the computation of the regular 
mape error numerically unstable. To mitigate this effect, 
we defined a modified “floored” mape error metric, which 
uses a value of 10-4 in the mape denominator if the CLT at 
that point is less than 10-4 µm. This effectively removes the 
impact of division by very small CLT values from the 
computation. This modified mape metric here is indicated 
as mape_f in the figures. 
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Fig. 2.  The nrmse metric for prediction of the CLT as a 
function of the amount of training samples for different 
values of the number of Nearest Neighbors (NN) used.  
 

 
Fig. 3.  The mape_f metric for prediction of the CLT as a 
function of the amount of training samples for different 
values of the number of Nearest Neighbors (NN) used. 
Errors are on the order of 1 – 2 %. 
 

Figures 2 and 3 show that the incorporation of the CLT 
at the previous time step along with the time step size as 
features, allows a very accurate prediction of the CLT, with 
mape errors down to about 1 – 2% on the validation data. 

 

 

Fig. 4.  The nrmse metric for prediction of the UO2 flux as 
a function of the amount of training samples for different 
values of the number of Nearest Neighbors (NN) used.  
 

 
Fig. 5.  The mape metric for prediction of the UO2 flux as 
a function of the amount of training samples for different 
values of the number of Nearest Neighbors (NN) used. 
Given enough data points, the mape error is less than 30 %. 
 

Figures 4 and 5 similarly show nice convergence of 
the kNNr surrogate approximation error in the UO2 flux as 
more training data is provided. 

 
Based on the trends in this preliminary tuning of the 

kNNr meta parameters, both the CLT and UO2 flux are best 
predicted using about 8 – 12 nearest neighbors with as 
much training data as possible. Note that the number of 
nearest neighbors used here is much lower than the 80 
nearest neighbors used in Section IV. As such, the addition 
of the CLT as a feature will allow for faster table lookups, 
and may also be more robust as there is less danger of 
grabbing points that are too far away when fewer neighbors 
are used in the interpolation.  Based on these tuning results, 
a kNNr configuration of 10 nearest neighbors using all 
available training data (all 23 million samples from the data 
set that was downsampled to 50 samples per FMD process 
model run) was selected to predict the testing data. This 
testing data has not been used in any of the training and 
tuning of the kNNr surrogate.  

 
Figures 6 and 7 below compare the kNNr predictions 

of the CLT and UO2 flux to the testing data for 50 randomly 
sampled trajectories of the FMD process model. Note that 
in this comparison, each data point in the time trajectories 
was predicted on its own, using the features provided by 
the testing data. In a real case scenario, the true CLT value 
at the previous time step would not be available and would 
need to be approximated by the same surrogate. As such, 
errors in the surrogate approximations in previous time 
steps may result in compounding errors over time. The 
analysis shown here is still useful as it shows where such 
errors are most likely to originate. 
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Fig. 6.  Comparison of the True and kNNr prediction of the 
CLT for 50 randomly selected runs in the testing data. 
 

 
Fig. 7.  Comparison of the True and kNNr prediction of the 
UO2 flux for 50 randomly selected runs in the testing data. 
 

Aside from some deviations early in time, the kNNr 
predictions of the CLT in Figure 6 are very close to the true 
values in the testing data. This graph also illustrates the 
very wide range in CLT values. It is believed that the errors 
in the CLT predictions at early time, when the CLT is often 
very small, are the ones that tend to inflate the mape error 
if no floor value is applied. 

 
The predictions of the UO2 fluxes in Figure 7 show 

good agreement with the test data, although the agreement 
is not as good as for the CLT predictions. As observed also 
in [17], the kNNr prediction is noisy as it is a local 
prediction, drawing information only from 10 nearest 
neighbors to each query point in the training sample space. 

 
Overall, with this kNNr configuration of 10 nearest 

neighbors and 23 million training samples, the prediction 
of the UO2 flux in the testing data shows an nrmse error of 
0.11, and a mape error of 29%. Even without extensive 
tuning of the kNNr metaparameters, this is a significant 
improvement from the nrmse error of 0.48 and mape error 

of 44% reported in Table III for the case where no CLT 
information was used. 
 
V.C. Ongoing Work 
 

We are continuing to tune the kNNr meta parameters 
in order to optimize both the accuracy and speed of the 
predictions. In this process, we are also investigating the 
cause of the large (in relative sense) deviations in the CLT 
predictions that show up at early times. Besides kNNr, we 
will also train Artificial Neural Networks (ANNs) using the 
same feature set. As ANNs use a functional representation 
rather than local approximations, the predictions by the 
ANN surrogates are likely to be smoother than the kNNr 
predictions when looking at time trajectories. The resulting 
kNNr and ANN configurations will then be employed to 
full scale nuclear waste performance assessment 
simulations 
 
VI. CONCLUSIONS 
 

Two machine learning surrogate models are under 
development to rapidly emulate the effects of the Fuel 
Matrix Degradation (FMD) model in the GDSA 
Framework. One is a k-Nearest Neighbors regressor 
(kNNr) method that operates on a lookup table, and the 
other is an Artificial Neural Network. Both approaches 
have a high degree of accuracy, provided that enough 
training data is available with features that are informative 
of the UO2 flux that results from the fuel degradation. 

 
While earlier work [17], used only features that do not 

require detailed information about the internal state of the 
fuel cask, the current work explored the use of the 
Corrosion Layer Thickness (CLT). While this feature 
would need to be predicted along with the UO2 flux at 
every time step in a reservoir simulation, the preliminary 
results in this work with the kNNr surrogate show that the 
CLT is very informative of the UO2 flux. Including CLT as 
a feature therefore results in dramatically better accuracy. 
Ongoing work is incorporating the CLT as a feature in the 
ANN surrogate, and further refining the sampling schemes 
and meta-parameter tuning processes before employing 
this approach in realistic, full scale respository simulations. 
 

The aim of these surrogate models is to enable the 
GDSA Framework to simulate spent fuel dissolution for 
each individual breached spent fuel waste package in a 
probabilistic repository simulation. Having the ability to 
emulate spent fuel dissolution in probabilistic PA 
simulations will have the added capability of allowing 
uncertainties in spent fuel dissolution to be propagated and 
sensitivities in FMD inputs to be quantified and ranked 
against other inputs. 
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