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Abstract

We present a graph neural network modeling approach that fully automates the prediction of the DFT-relaxed
vacancy formation enthalpy of any crystallographic site from its DFT-relaxed host structure. Applicable to
arbitrary structures with an accuracy limited principally by the amount/diversity of the data on which it is
trained, this model accelerates the screening of vacancy defects by many orders of magnitude by replacing
the (up to 100s of) DFT supercell relaxations required for each symmetrically unique crystal site. It can thus be
used off-the-shelf to rapidly screen 10,000s of crystal structures (which can contain millions of unigue defects)
from existing databases of DFT-relaxed crystal structures. We demonstrate the model's practical utility by
high-throughput screening metal oxides from the Materials Project to identify high potential candidates for
solar thermochemical water splitting. Ultimately, this modeling approach provides a significant screening and
discovery capability for any application in which vacancy defects are the primary driver of a material's utility.

» Develop a novel, generalizable graph neural network approach for predicting vacancy defect properties
» Achieve many orders of magnitude faster prediction than first-principles calculations, e.g. DFT
» Rapidly screen for new, optimal materials for clean energy applications, e.g. H, generation

» Future work: significant potential for further development and application to other materials science
domains




Solar thermochemical water splitting (STCH) generates green (CO,-free) H,

Direct 2 step redox cycle (nb. >300 proposed cycles...)[!!  Top candidates (BCM-12R) are well-studied & characterized
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~Month to synthesize, characterize, test 1 material

1st principles (DFT): Compute oxygen vacancy formation
enthalpy (e.g., AHY) of all sites

A Thermodynamic “sweet-spot”:
e At least one AHS € [2.3, 4.0] eV
All AHS > 2.3 eV

H, H-,0

No MO, solution yet that meets all

requirements for T,, stability, kinetics, etc. : :
\_ i d b W, ~Month to compute this proxy for handful of materials
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[1] www.energy.gov/eere/fuelcells/hydrogen-production-thermochemical-water-splitting



http://www.energy.gov/eere/fuelcells/hydrogen-production-thermochemical-water-splitting

Computational search for AHg € [2.3, 4.0] eV rapidly encounters scaling issues

Need the vacancy formation enthalpy, ) . . i
AH , of all N symmetry sites: First-principles DFT workflow is robust but costly (using NRELMatDb hosts)
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Diversity in Training:

—— 40 unique crystal structures and
38 unique compositions

l B. Host Calculations

Relaxed defect energy, E4 g ot Re'f"xe‘jds””_;t”r_e'
N=1 defect N=2 defect %g tomic spin and oxi atl?n state,
3 Enthalpy of formation,
Full search E Bandgap, Electron effective mass
Li Be space B C N (0]
Na | Mg Training Al |si [P |s
: : C. Defect Calculations
K |Ca [Sc |Ti |V |Cr [Mn|Fe |Co |[Ni [Cu (Zn |Ga |Ge |As |Se e Calculated oxide space: ™\
Rb |Sr |Y Zr |[Nb [Mo|Tc |Ru [Rh |Pd [Ag |Cd |In [Sn |Shb |Te ~200 host structures
AHy = Eq — Ey + Z ﬂillimf & | SERL e T [ WHl Re [Os |Ir [Pt |Au | HgTT R // ~1500 defect relaxations
i o /e |Ac 1 years” work
.'I" .'L "I" .l‘ Ce |Pr {[Nd [Pm [Sm [Eu |Gd |Tb |[Dy [Ho |Er |Tm |Yb o g id .
Defect Relaxed Atomic — Existing oxide space:
Formation Defect and Host Reference 100+ years’ work... so more efficient model needed == ~10,000s host structures
Energy  Supercell Energy Energy ~1Ms defect relaxations

\ Requires N+1 DFT relaxations y \_ \ v,




A more generalizable approach is needed to model vacancy defects
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(1) Compositional features can’t differentiate symmetry sites (2) Hand-engineered x used for specific material classes

-

Wyckoff AH,
site A\
Mn1 12.2
Mn2 12.1

O1 2.1

02 2.2
03 2.6
04 2.7

Mn01_5 = Xp1 = X04 = {ﬁpa Ifcau ;f; ---}

Problem:
» Xop and x4 are identical but...
» Local structures quite different

» Target value differs by 0.6 eV

~

é Wexler et al. J. Am. Chem. Soc. 2021 {\Hd MAE = 0.45 eV
Linear Model works well for ABO3 perovskites:

0.12Ep — 1.5V, + 0.451— 55.8.’:_?-” + 0.4 (eV)
Band gap  Stability - X

’ Crystal
bond  Crystal reduction
dissociation

Limitations:
» Model only validated for O sites in ABO, perovskites

> Needs re-derivation for other structure classes

N

Frey et al. ACS Nano. 2020 AH4; MAE = 0.67 eV
F‘r'f-.dict ideal
"“Tﬁ"f“s Random forest model
I 7 I L works well for certain

vacancies in 2D materials

Train defect

Identify 2D host
structure model

materials

Limitations:
» Model and features specific to 2D material classes

> Needs re-derivation for other structure classes

NMLDL




Automated feature extraction of graph neural networks (GNNs) enables efficient

and generic modeling of vacancy formation enthalpy

Automated feature extraction with GNNs [1]

Deriving a “defect GNN” approach!?]

-

Interpret crystal as a graph (nodes = atoms, “bonds” = edges)

J
Hf‘.nnv L, hidden Poolingx L, hidden

Repeated passing of info.

X ayid

Ife-

between neighbors

Pool atom features to create
crystal feature vector

_J

[1] Xie, et al. P.R.L. 120 (14), 2018
[2] Witman, et al. Submitted
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Predict using only host structure, X},, and defect atom index, i’
DFT: AHgz = EDFI‘(XGI) - EDFI‘(X.‘?,) + ref
ML: Aﬁd = fGNN(Xhi lf, 8)

e
» Example graph: 171°

12
VU,

» Encode the graph (step t = 0):

=0 = {ro, xo0, -+ 51}

Accuracy boosting, site-specific
inputs (i.e. oxidation state)

» Convolutions (t =1...T)

0 (B () o) o (w4
J

» Property prediction (no pooling):

Xdefect = U(v'{' v, W+ b)

» Extract defect feature vector
» Use host’s global properties,
v, = {band gap, ...}




Defect GNN approach validated for use in high-throughput screening exercise

Benchmark accuracy has been met for HT screening
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NRELMatDb vs. Materials Project (MP) structure inputs
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MgAI204
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Al2FeQ4
LaAlO3
Y3AI5012
MgTiO3
TiMnO3
TiNiO3
Caln204
Mnin204
MgMn204
Mn(FeO2)2
MnCoO3
MnNiO3
MnNiO3
SrFe03

» Robust to small variations in structure
» Can screen using a different database (MP)
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Hight-throughput screening 2,000 oxides (50,000 unigue defects) rediscovers
known water-splitting oxides and identifies new ones (~10 top candidates)
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(1) Co-design of host defects and stability for water-splitting (2) Screen the Materials Project for all defects

4 ) ) Y ( Exclude # Defects )
Metric Requirement non-metals Needs to be | 8- ey
Frac. of defects w/AH(? >2.3eV R £ excluded!
n =01 102
Frac. of defects w/AHS € [2.3, 4.0] eV Xyng >0 evialom  Cations in wll
train set all 4 - —
Host stability criteria (ranges intersect) A,u{)z N Aug’f{x 0 ) 'l 10!
Operating range for STCH
L Range where host’s grand energy above hull (¢y) is < X) 0{ T | o
—4 -2 0
(3) Identify and filter increasingly promising targets § AH;, [eV/atom] J
197 formulas 114 formulas 34 formulas 16 formulas 9 formulas > Fi . . . . . )
(48 training) (33 training) (17 training) (11 training) (9 training) Filter candidates with increasingly certain performance
» Xmin1 = 1 > Xminz = 1 » Xminz = 1 > Xmina = 1 » Xmin3 = 1
> ¥mg1 > 0 > *rg2 > 0 > Xmg3 > 0 > Xme3 >0 > ¥mgs =1 > Mainly identifies known, synthesizable compounds
} Mg:-{ﬂ.'l } ﬂlug:{&i } ﬂ#g:;‘{ﬂ.ﬂfl } ﬁ’ug:'-ﬂ } ﬁ#g:.-n
SrgTisFeDyy La;MnCoOyg BaSr(Fe03), BazSrLazFe 045 Basln,Og
(mp-1645141) (mp-19208) (mp-1228024) (mp-698793) (mp-20352) » ~100 are not AXO,, A, X,05,,,, Fe; .M O,, CeO,, etc.
:l:; ﬁ's& 5&!' ) ] . ]
:E&F ot » Rediscovers complex, known water-splitting materials
aass oo St not in training data) like Ba,CeMn,0
4 3¥12
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All training data, code, screening scripts, and finalized predictions are provided open-
source for community use and customized filtering before attempting experiments

Open access preprint and summary of screening results are provided in user friendly, customizable csv:
.
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Zenodo repository for training data, analysis, & paper reproducibility: Github for defect GNN code:

4 N\ ( )
Search or jump to...
May 23, 2022 [ Datasnt | Open Access |
A database of vacancy formation enthalpies for New version )
materials discovery H mwitman1/cgcnndefect ' Public
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A database of y lon enthalpies for materials discovery & VWS & downloads \ y
Matthew Witman®, Anuj Goyal®, Tadashi Dgitsu®, Anthony MecDaniel®, Stephan Lany” Sea mane details
 Sandia Mational Laboratories, © Mational Renewable Energy Labaratory, © Lawrence Livermore National Laboratories
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In conclusion, STCH oxides have been screened ~10° times faster than brute-
force DFT search to identify promising water-splitting oxides

Materials Project Significant room for future development:
(10,000s oxides)
» Expanded cation space

Experiments:

ML screening: Minutes In progress » Expanded anion space (beyond O)
DFT: 3k months 4 Defects
erec
g - » More structural diversity (2D materials)
mp-1247717
102 » Probe other applications where vacancies are
the primary driver of material utility (or failure)
10!
~100 top
oxides : : : 100

—4 -2 0
AH}, [eV/atom]



Thank you for your attention. Questions?

mwitman@sandia.gov




