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Abstract
We present a graph neural network modeling approach that fully automates the prediction of the DFT-relaxed 
vacancy formation enthalpy of any crystallographic site from its DFT-relaxed host structure. Applicable to 
arbitrary structures with an accuracy limited principally by the amount/diversity of the data on which it is 
trained, this model accelerates the screening of vacancy defects by many orders of magnitude by replacing 
the (up to 100s of) DFT supercell relaxations required for each symmetrically unique crystal site. It can thus be 
used off-the-shelf to rapidly screen 10,000s of crystal structures (which can contain millions of unique defects) 
from existing databases of DFT-relaxed crystal structures. We demonstrate the model's practical utility by 
high-throughput screening metal oxides from the Materials Project to identify high potential candidates for 
solar thermochemical water splitting. Ultimately, this modeling approach provides a significant screening and 
discovery capability for any application in which vacancy defects are the primary driver of a material's utility.
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 Develop a novel, generalizable graph neural network approach for predicting vacancy defect properties
 Achieve many orders of magnitude faster prediction than first-principles calculations, e.g. DFT
 Rapidly screen for new, optimal materials for clean energy applications, e.g. H2 generation
 Future work: significant potential for further development and application to other materials science 

domains



Solar thermochemical water splitting (STCH) generates green (CO2-free) H2

[1] www.energy.gov/eere/fuelcells/hydrogen-production-thermochemical-water-splitting

Oxidation: To ~ 1000 C

Thermal reduction: Tr ~ 1300 C O2

H2 H2O

Direct 2 step redox cycle (nb. >300 proposed cycles…) [1] Top candidates (BCM-12R) are well-studied & characterized
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~Month to synthesize, characterize, test 1 material

Experiments: Directly measure and evaluate H2 and O2 
production rates

~Month to compute this proxy for handful of materials

http://www.energy.gov/eere/fuelcells/hydrogen-production-thermochemical-water-splitting


First-principles DFT workflow is robust but costly (using NRELMatDb hosts)

N=1 defect N=2 defect

Requires N+1 DFT relaxations

Calculated oxide space:
~200 host structures 

~1500 defect relaxations

Existing oxide space:
~10,000s host structures 
~1Ms defect relaxations

100+ years’ work… so more efficient model needed

~1 years’ work



(1) Compositional features can’t differentiate symmetry sites

Limitations:
 Model only validated for O sites in ABO3 perovskites
 Needs re-derivation for other structure classes

Linear Model works well for ABO3 perovskites:

Wexler et al. ﻿J. Am. Chem. Soc. 2021

Crystal 
bond 
dissociation

Crystal reduction
Band gap Stability ᵉ�

﻿Frey et al. ACS Nano. 2020

Random forest model 
works well for certain 
vacancies in 2D materials

Limitations:
 Model and features specific to 2D material classes
 Needs re-derivation for other structure classes

A more generalizable approach is needed to model vacancy defects



H2 storage

Automated feature extraction with GNNs [1] 

Automated feature extraction of graph neural networks (GNNs) enables efficient 
and generic modeling of vacancy formation enthalpy

Interpret crystal as a graph (nodes = atoms, “bonds” = edges)

Repeated passing of info. 
between neighbors

Pool atom features to create 
crystal feature vector
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[1] Xie, et al. P.R.L. 120 (14), 2018
[2] Witman, et al. Submitted

Deriving a “defect GNN” approach[2]

 Property prediction (no pooling):

O Mn
ᵈ� 12 ᵉ� 2ᵉ� 1 Example graph:

Accuracy boosting, site-specific 
inputs (i.e. oxidation state)



Defect GNN approach validated for use in high-throughput screening exercise

Benchmark accuracy has been met for HT screening

 MAE < 450 meV
 Still have log-linear 

decrease w/more data
 Minutes to train on CPUs

 Can predict O and 
non-O vacancies

Effects of encoding strategies, predicting 
compounds containing cations not in training, etc. See preprint

NRELMatDb vs. Materials Project (MP) structure inputs

 Robust to small variations in structure
 Can screen using a different database (MP)



Hight-throughput screening 2,000 oxides (50,000 unique defects) rediscovers 
known water-splitting oxides and identifies new ones (~10 top candidates)

Metric Requirement

Host stability criteria (ranges intersect)

(1) Co-design of host defects and stability for water-splitting (2) Screen the Materials Project for all defects

Needs to be 
excluded!

(3) Identify and filter increasingly promising targets

 Filter candidates with increasingly certain performance

 Mainly identifies known, synthesizable compounds

 ~100 are not AXO3 , An+1XnO3n+1 , Fe3-nMnO4, CeO2 , etc.

 Rediscovers complex, known water-splitting materials 
(not in training data) like Ba4CeMn3O12



All training data, code, screening scripts, and finalized predictions are provided open-
source for community use and customized filtering before attempting experiments

…

…

Open access preprint and summary of screening results are provided in user friendly, customizable csv:

Zenodo repository for training data, analysis, & paper reproducibility:  Github for defect GNN code:



In conclusion, STCH oxides have been screened ~106 times faster than brute-
force DFT search to identify promising water-splitting oxides

Materials Project
(10,000s oxides)

~100 top 
oxides

ML screening: Minutes
DFT: 3k months

Experiments:
In progress

Significant room for future development:

 Expanded cation space

 Expanded anion space (beyond O)

 More structural diversity (2D materials)

 Probe other applications where vacancies are 
the primary driver of material utility (or failure)



Thank you for your attention. Questions?

mwitman@sandia.gov


