

MLDL

Machine Learning and Deep Learning Conference 2022

Graph Neural Network Modeling of Vacancy Formation for Materials Discovery in Solar Thermochemical Water Splitting

Matthew Witman / Sandia National Laboratories

[Anuj Goyal / National Renewable Energy Laboratory](#)

[Tadashi Ogitsu / Lawrence Livermore National Laboratory](#)

[Anthony McDaniel / Sandia National Laboratories](#)

[Stephan Lany / National Renewable Energy Laboratory](#)

Funded by HydroGEN program (DOE-EERE-HFTO)

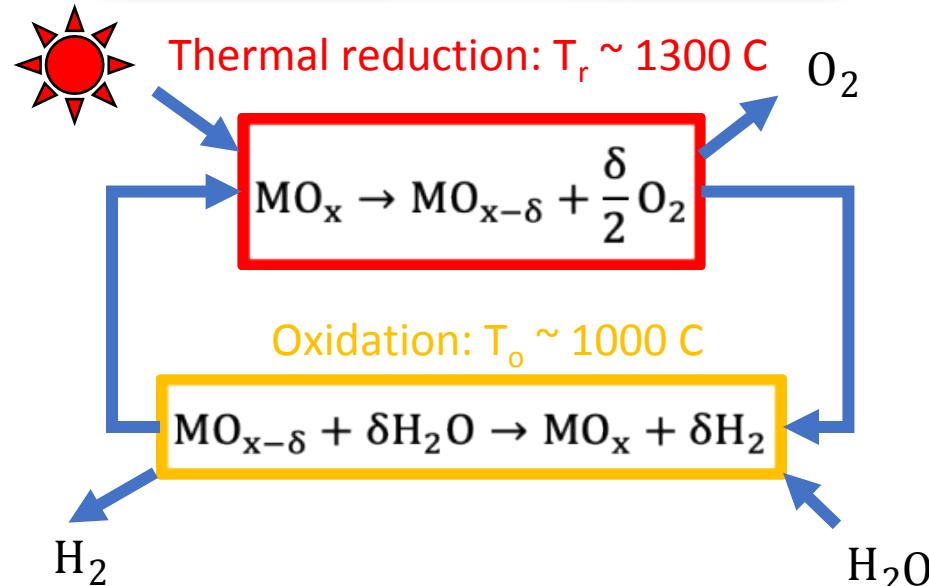
Abstract

We present a graph neural network modeling approach that fully automates the prediction of the DFT-relaxed vacancy formation enthalpy of any crystallographic site from its DFT-relaxed host structure. Applicable to arbitrary structures with an accuracy limited principally by the amount/diversity of the data on which it is trained, this model accelerates the screening of vacancy defects by many orders of magnitude by replacing the (up to 100s of) DFT supercell relaxations required for each symmetrically unique crystal site. It can thus be used off-the-shelf to rapidly screen 10,000s of crystal structures (which can contain millions of unique defects) from existing databases of DFT-relaxed crystal structures. We demonstrate the model's practical utility by high-throughput screening metal oxides from the Materials Project to identify high potential candidates for solar thermochemical water splitting. Ultimately, this modeling approach provides a significant screening and discovery capability for any application in which vacancy defects are the primary driver of a material's utility.

- Develop a novel, generalizable graph neural network approach for predicting vacancy defect properties
- Achieve many orders of magnitude faster prediction than first-principles calculations, e.g. DFT
- Rapidly screen for new, optimal materials for clean energy applications, e.g. H₂ generation
- Future work: significant potential for further development and application to other materials science domains

Solar thermochemical water splitting (STCH) generates *green* (CO_2 -free) H_2

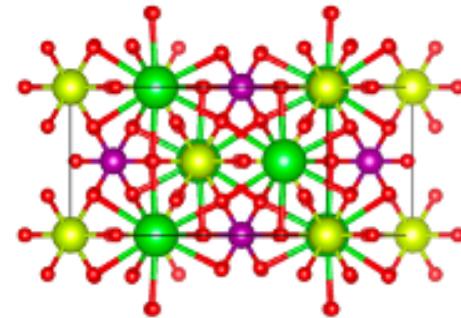
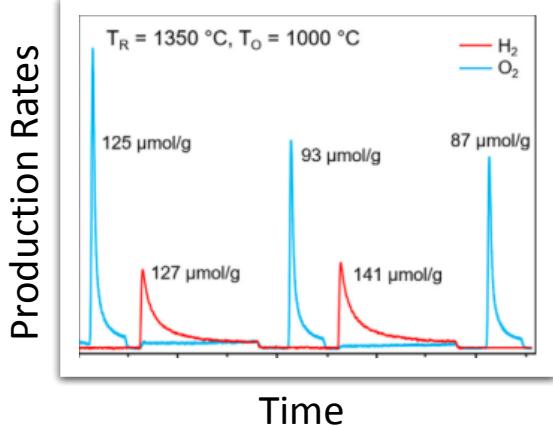
Direct 2 step redox cycle (nb. >300 proposed cycles...) ^[1]



No MO_x solution yet that meets all requirements for T_r , stability, kinetics, etc.

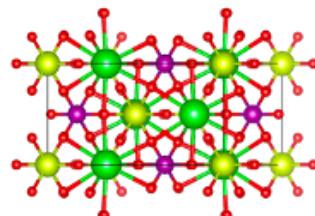
Top candidates (BCM-12R) are well-studied & characterized

Experiments: Directly measure and evaluate H_2 and O_2 production rates



~Month to synthesize, characterize, test 1 material

1st principles (DFT): Compute oxygen vacancy formation enthalpy (e.g., ΔH_d^0) of all sites



Thermodynamic “sweet-spot”:
 At least one $\Delta H_d^0 \in [2.3, 4.0] \text{ eV}$
 All $\Delta H_d^0 > 2.3 \text{ eV}$

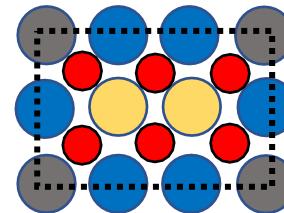
~Month to compute this proxy for handful of materials

[1] www.energy.gov/eere/fuelcells/hydrogen-production-thermochemical-water-splitting

Computational search for $\Delta H_d^0 \in [2.3, 4.0]$ eV rapidly encounters scaling issues

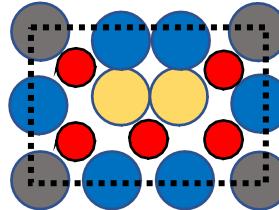
Need the vacancy formation enthalpy, ΔH_d , of all **N** symmetry sites:

Relaxed host energy, E_h

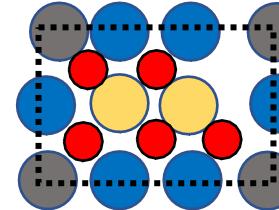


Relaxed defect energy, E_d

N=1 defect



N=2 defect



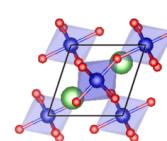
$$\Delta H_d = E_d - E_h + \sum_i n_i \mu_i^{\text{ref}}$$

Defect Formation Energy
Relaxed Defect and Host Supercell Energy
Atomic Reference Energy

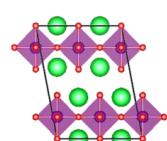
Requires N+1 DFT relaxations

First-principles DFT workflow is robust but costly (using NRELMatDb hosts)

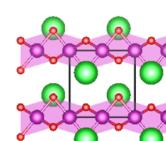
Monoclinic



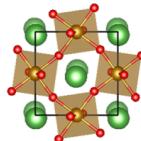
Tetragonal



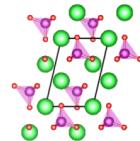
Hexagonal



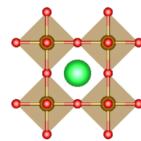
Orthorhombic



Trigonal



Cubic



Li	Be
Na	Mg
K	Ca
Rb	Sr
Cs	Ba
Fr	Ra
La	Ac

Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se
Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te
Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	II	Pb	Bi	Po	
										Ce	Pr	Nd	Pm
										Sm	Eu	Gd	Tb
										Dy	Ho	Er	Tm
										Yb			

100+ years' work... so more efficient model needed

A. Material Space

Diversity in Training:
40 unique crystal structures and
38 unique compositions

B. Host Calculations

Relaxed structure,
Atomic spin and oxidation state,
Enthalpy of formation,
Bandgap, Electron effective mass

C. Defect Calculations

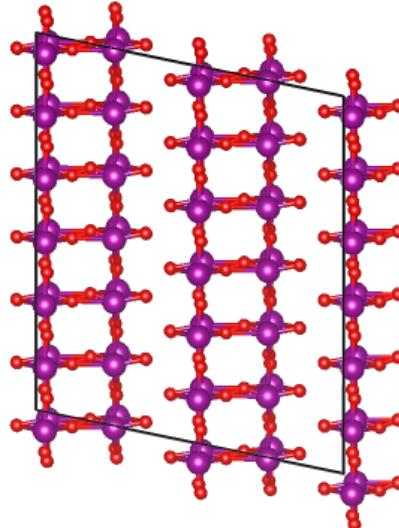
Calculated oxide space:
~200 host structures
~1500 defect relaxations

~1 years' work

Existing oxide space:
~10,000s host structures
~1Ms defect relaxations

A more generalizable approach is needed to model vacancy defects

(1) Compositional features can't differentiate symmetry sites



Wyckoff site	ΔH_d [eV]
Mn1	12.2
Mn2	12.1
O1	2.1
O2	2.2
O3	2.6
O4	2.7

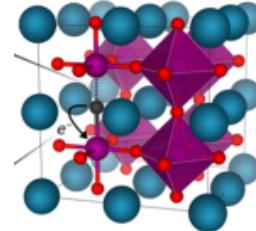
$$\text{MnO}_{1.5} \mapsto \mathbf{x}_{01} = \mathbf{x}_{04} = \{\bar{v}_{pa}, \bar{r}_{cov}, \bar{\chi}, \dots\}$$

Problem:

- \mathbf{x}_{01} and \mathbf{x}_{04} are identical but...
- Local structures quite different
- Target value differs by 0.6 eV

(2) Hand-engineered \mathbf{x} used for specific material classes

Wexler et al. *J. Am. Chem. Soc.* 2021 ΔH_d MAE = 0.45 eV



Linear Model works well for ABO₃ perovskites:

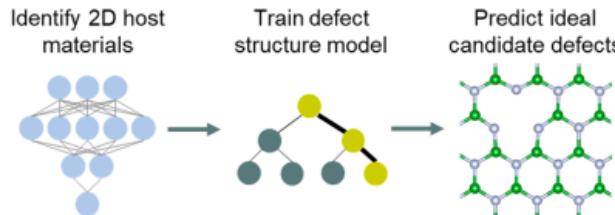
$$0.1\sum E_b - 1.5V_r + 0.4E_g - 55.8E_{hull} + 0.4 \text{ (eV)}$$

↑ Crystal bond
 ↑ Crystal reduction
 ↑ Band gap
 ↑ Stability ← \mathbf{x}

Limitations:

- Model only validated for O sites in ABO₃ perovskites
- Needs re-derivation for other structure classes

Frey et al. *ACS Nano*. 2020 ΔH_d MAE = 0.67 eV



Random forest model works well for certain vacancies in 2D materials

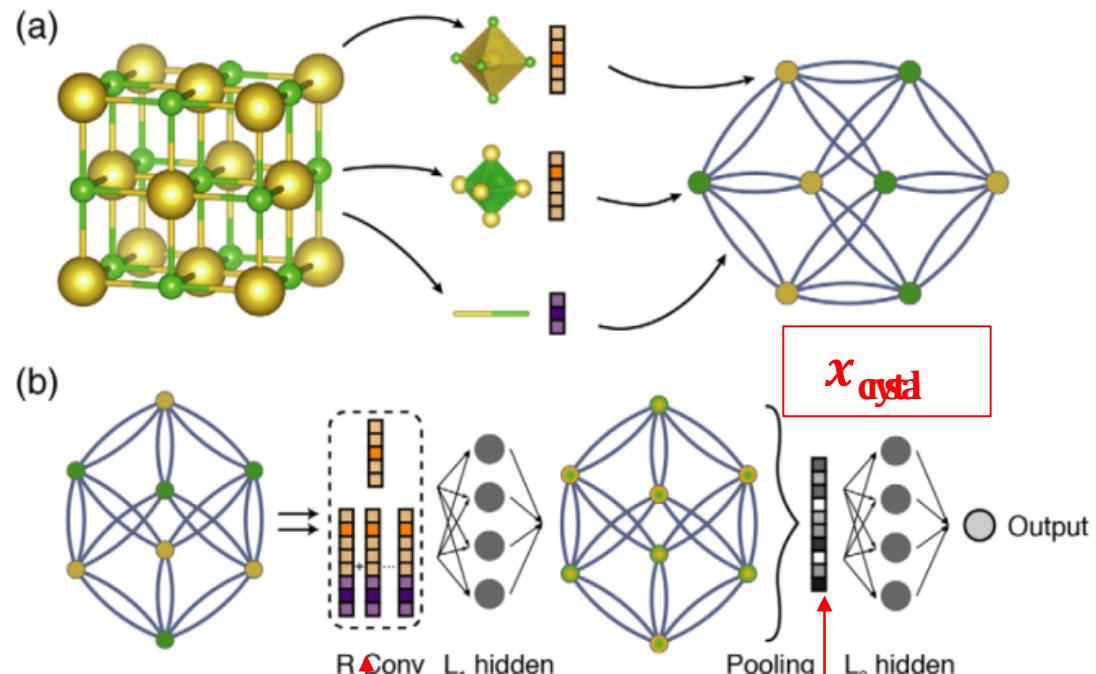
Limitations:

- Model and features specific to 2D material classes
- Needs re-derivation for other structure classes

Automated feature extraction of graph neural networks (GNNs) enables efficient and generic modeling of vacancy formation enthalpy

Automated feature extraction with GNNs^[1]

Interpret crystal as a graph (nodes = atoms, "bonds" = edges)



Repeated passing of info.
between neighbors

Pool atom features to create
crystal feature vector

[1] Xie, et al. *P.R.L.* 120 (14), 2018

[2] Witman, et al. *Submitted*

Deriving a "defect GNN" approach^[2]

Predict using only host structure, X_h , and defect atom index, i'

$$\text{DFT: } \Delta H_d = E_{\text{DFT}}(X_d) - E_{\text{DFT}}(X_h) + \text{ref}$$

$$\text{ML: } \Delta \hat{H}_d = f_{\text{GNN}}(X_h, i'; \theta)$$

➤ Example graph: v_1 e_{12} v_2

➤ Encode the graph (step $t = 0$):

$$v_1^{t=0} = \{r_0, \chi_0, \dots, s_1\}$$

Accuracy boosting, site-specific inputs (i.e. oxidation state)

➤ Convolutions ($t = 1 \dots T$)

$$v_i^{(t+1)} = g \left(v_i^{(t)} + \sum_j \sigma \left(z_{ij}^{(t)} w_1^{(t)} + b_1^{(t)} \right) \odot g \left(z_{ij}^{(t)} w_2^{(t)} + b_2^{(t)} \right) \right)$$

➤ Property prediction (no pooling):

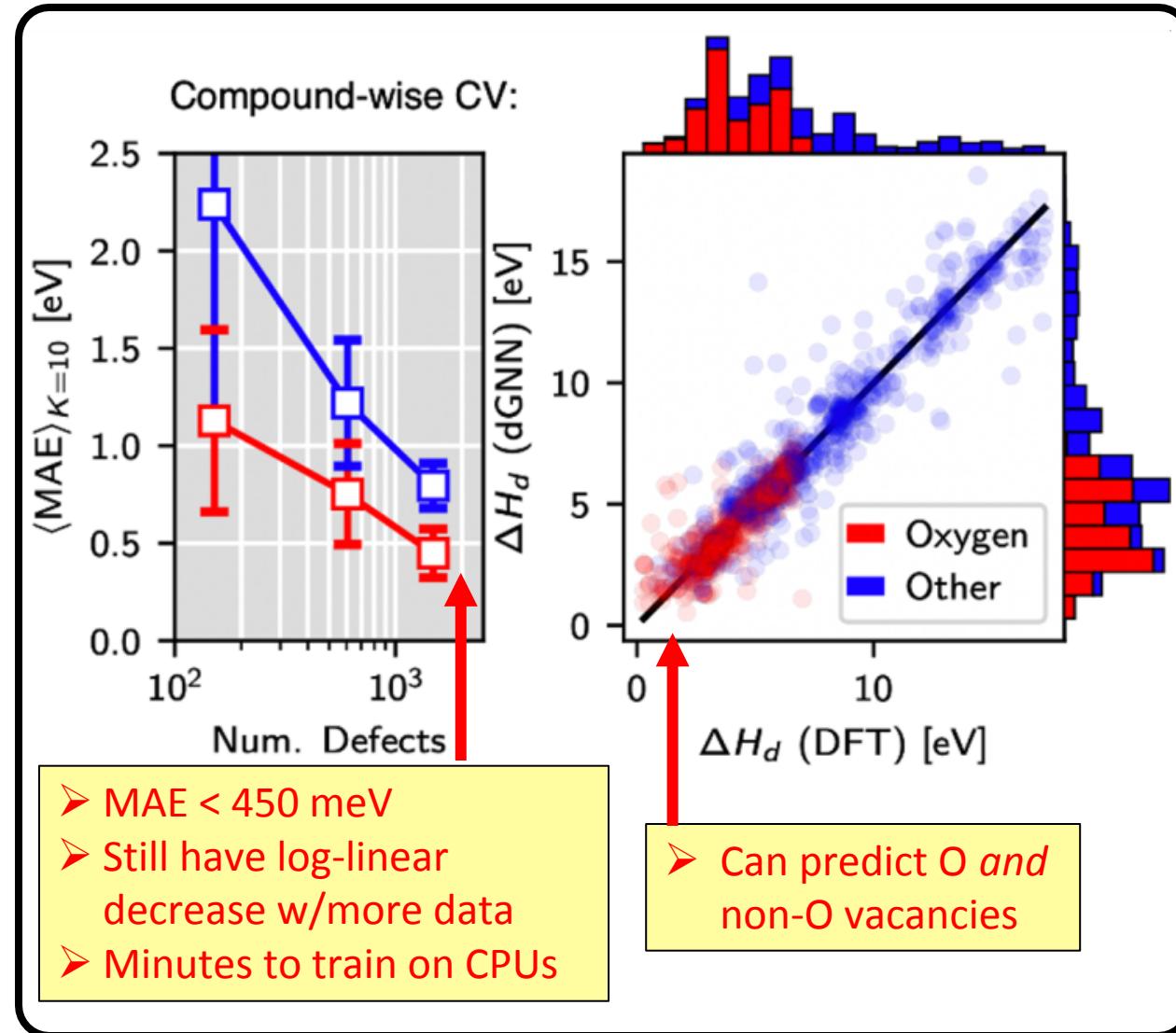
$$x_{\text{defect}} = \sigma(v_{i'}^T \oplus v_g \cdot W + b)$$

$$\Delta \hat{H}_d = x_{\text{defect}} \cdot W + b$$

➤ Extract defect feature vector
➤ Use host's global properties,
 $v_g = \{\text{band gap}, \dots\}$

Defect GNN approach validated for use in high-throughput screening exercise

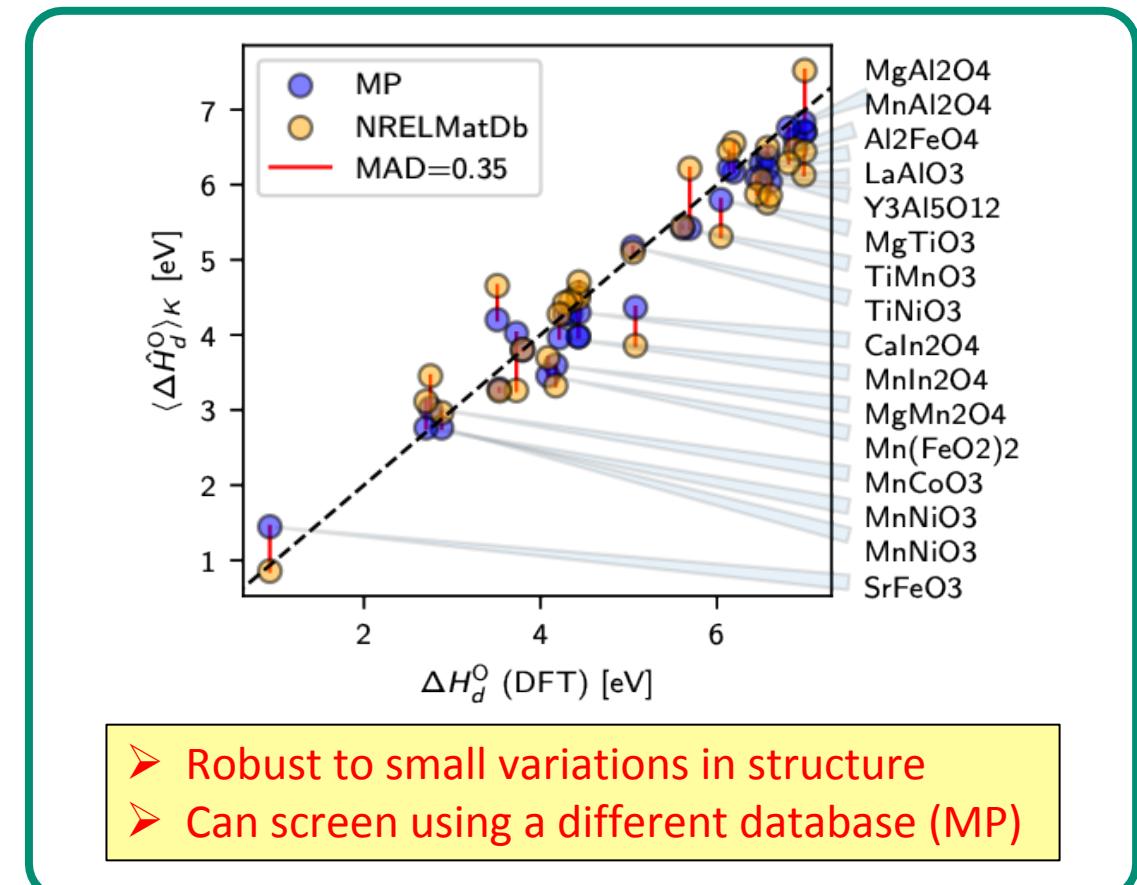
Benchmark accuracy has been met for HT screening



Effects of encoding strategies, predicting compounds containing cations *not* in training set

➤ See preprint

NRELMatDb vs. Materials Project (MP) structure inputs

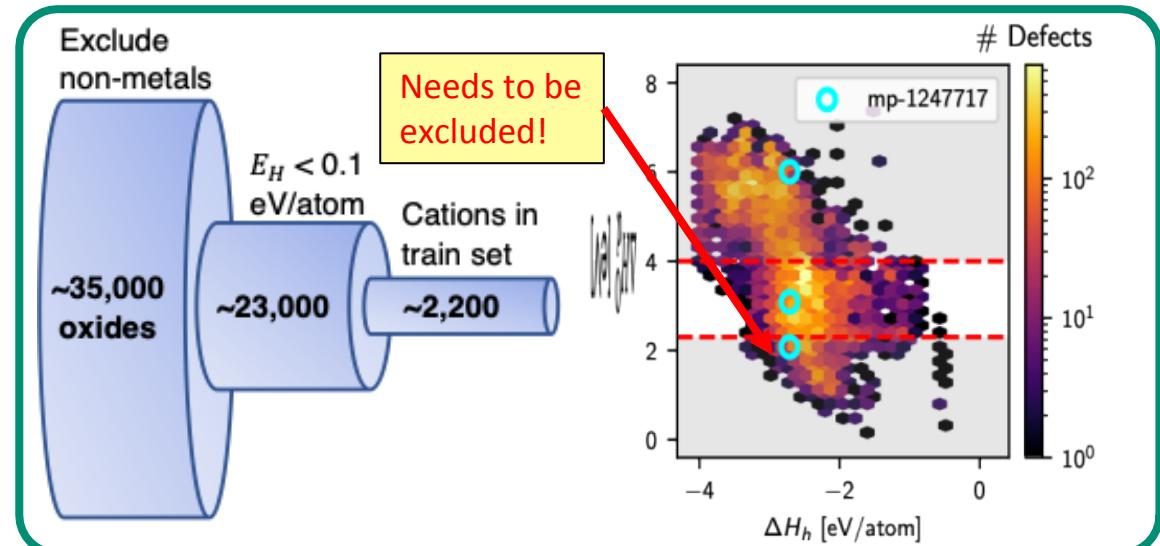


High-throughput screening 2,000 oxides (50,000 unique defects) redisCOVERS known water-splitting oxides and identifies new ones (~10 top candidates)

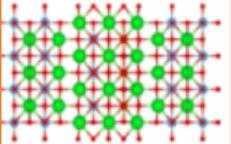
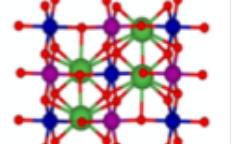
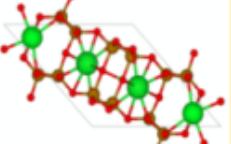
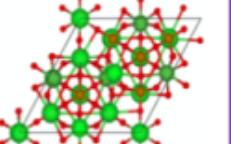
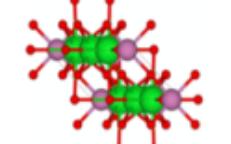
(1) Co-design of host defects and stability for water-splitting

Metric	Requirement
Frac. of defects w/ $\Delta H_d^0 > 2.3$ eV	$x_{\min} = 1$
Frac. of defects w/ $\Delta H_d^0 \in [2.3, 4.0]$ eV	$x_{\text{rng}} > 0$
Host stability criteria (ranges intersect)	$\Delta\mu'_{O_2} \cap \Delta\mu_{O_2}^{\phi_H < X} \neq \emptyset$
Operating range for STCH	
Range where host's grand energy above hull (ϕ_H) is $< X$	

(2) Screen the Materials Project for all defects



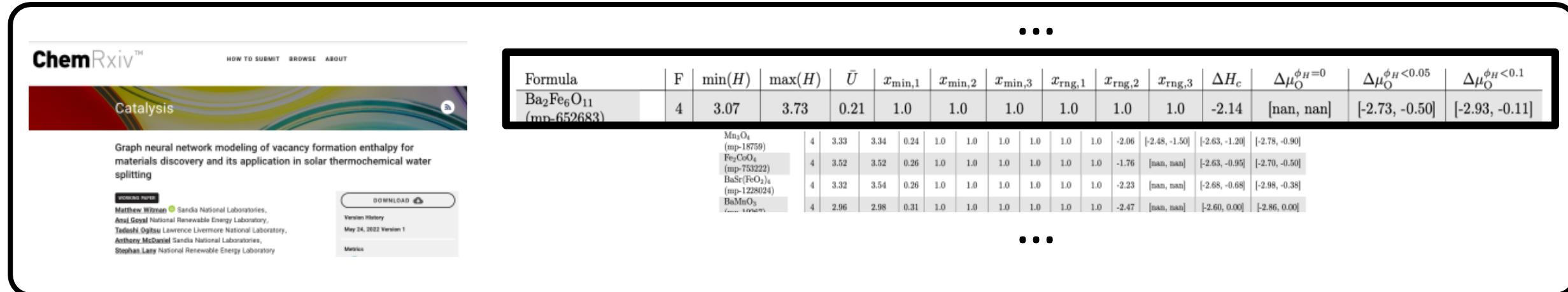
(3) Identify and filter increasingly promising targets

197 formulas (48 training)	114 formulas (33 training)	34 formulas (17 training)	16 formulas (11 training)	9 formulas (9 training)
$\triangleright x_{\min,1} = 1$	$\triangleright x_{\min,2} = 1$	$\triangleright x_{\min,3} = 1$	$\triangleright x_{\min,3} = 1$	$\triangleright x_{\min,3} = 1$
$\triangleright x_{\text{rng},1} > 0$	$\triangleright x_{\text{rng},2} > 0$	$\triangleright x_{\text{rng},3} > 0$	$\triangleright x_{\text{rng},3} > 0$	$\triangleright x_{\text{rng},3} = 1$
$\triangleright \Delta\mu_{O_2}^{\phi_H < 0.1}$	$\triangleright \Delta\mu_{O_2}^{\phi_H < 0.1}$	$\triangleright \Delta\mu_{O_2}^{\phi_H < 0.05}$	$\triangleright \Delta\mu_{O_2}^{\phi_H < 0}$	$\triangleright \Delta\mu_{O_2}^{\phi_H = 0}$
<chem>Sr6Ti3FeO14</chem> (mp-1645141)	<chem>La2MnCoO6</chem> (mp-19208)	<chem>BaSr(FeO2)4</chem> (mp-1228024)	<chem>Ba5SrLa2Fe4O15</chem> (mp-698793)	<chem>Ba3In2O6</chem> (mp-20352)
				

- Filter candidates with increasingly certain performance
- Mainly identifies known, synthesizable compounds
- ~100 are not AXO_3 , $A_{n+1}X_nO_{3n+1}$, $Fe_{3-n}M_nO_4$, CeO_2 , etc.
- RedisCOVERS complex, known water-splitting materials (not in training data) like Ba4CeMn3O12

All training data, code, screening scripts, and finalized predictions are provided open-source for community use and customized filtering before attempting experiments

Open access preprint and summary of screening results are provided in user friendly, customizable csv:



ChemRxiv™

HOW TO SUBMIT BROWSE ABOUT

Catalysis

Graph neural network modeling of vacancy formation enthalpy for materials discovery and its application in solar thermochemical water splitting

Version history

Matthew Witman (Sandia National Laboratories, Anuj Goyal (National Renewable Energy Laboratory, Tadashi Ogitsu (Lawrence Livermore National Laboratory, Anthony McDaniel (Sandia National Laboratories, Stephan Lany (National Renewable Energy Laboratory)

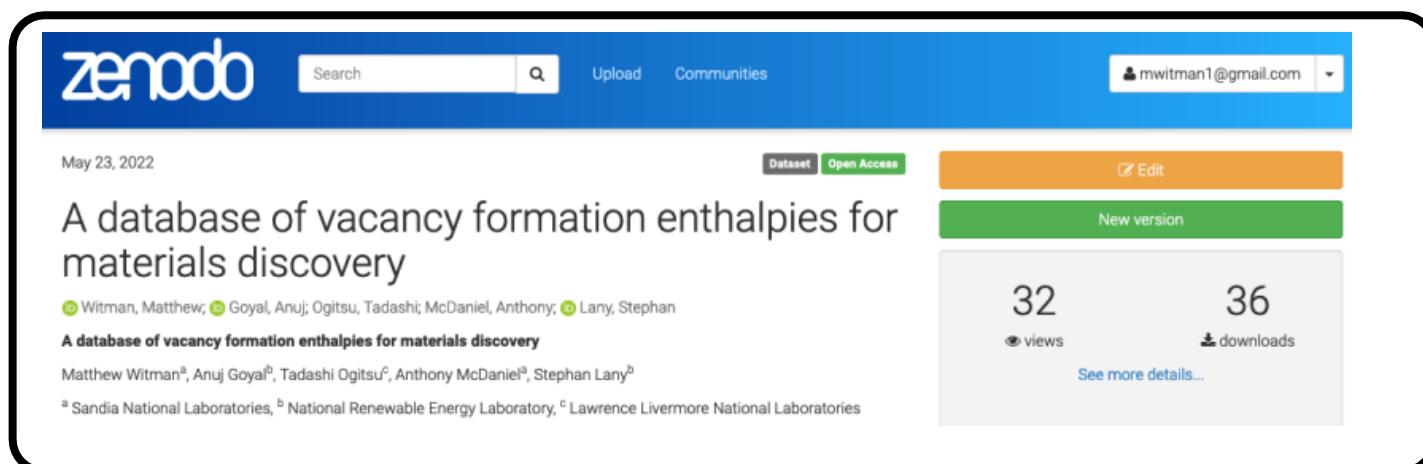
DOWNLOAD

Version May 24, 2022 Version 1

Metrics

Formula	F	min(H)	max(H)	\bar{U}	$x_{\min,1}$	$x_{\min,2}$	$x_{\min,3}$	$x_{\text{rng},1}$	$x_{\text{rng},2}$	$x_{\text{rng},3}$	ΔH_c	$\Delta\mu_O^{\phi_H=0}$	$\Delta\mu_O^{\phi_H<0.05}$	$\Delta\mu_O^{\phi_H<0.1}$
<chem>Ba2Fe6O11</chem> (mp-652683)	4	3.07	3.73	0.21	1.0	1.0	1.0	1.0	1.0	1.0	-2.14	[nan, nan]	[-2.73, -0.50]	[-2.93, -0.11]
<chem>Mn3O4</chem> (mp-18759)	4	3.33	3.34	0.24	1.0	1.0	1.0	1.0	1.0	1.0	-2.48, -1.50	[-2.63, -1.20]	[-2.78, -0.90]	
<chem>Fe2CoO4</chem> (mp-753222)	4	3.52	3.52	0.26	1.0	1.0	1.0	1.0	1.0	1.0	-1.76	[nan, nan]	[-2.63, -0.95]	[-2.70, -0.50]
<chem>BaSr(FeO3)4</chem> (mp-1228024)	4	3.32	3.54	0.26	1.0	1.0	1.0	1.0	1.0	1.0	-2.23	[nan, nan]	[-2.68, -0.68]	[-2.98, -0.38]
<chem>BaMnO3</chem> (mp-1228025)	4	2.96	2.98	0.31	1.0	1.0	1.0	1.0	1.0	1.0	-2.47	[nan, nan]	[-2.60, 0.00]	[-2.86, 0.00]

Zenodo repository for training data, analysis, & paper reproducibility:



zenodo

Search Upload Communities

Dataset Open Access

May 23, 2022

mwitman1@gmail.com

A database of vacancy formation enthalpies for materials discovery

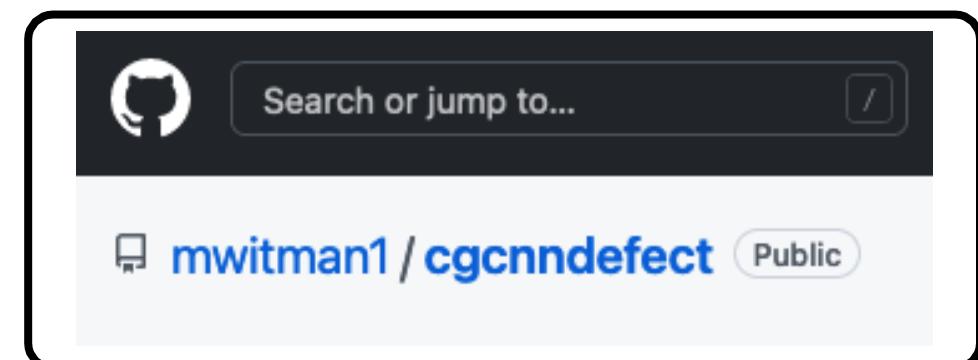
Matthew Witman^a, Anuj Goyal^a; Tadashi Ogitsu^b; Anthony McDaniel^a; Stephan Lany^b

^a Sandia National Laboratories, ^b National Renewable Energy Laboratory, ^c Lawrence Livermore National Laboratories

32 views 36 downloads

See more details...

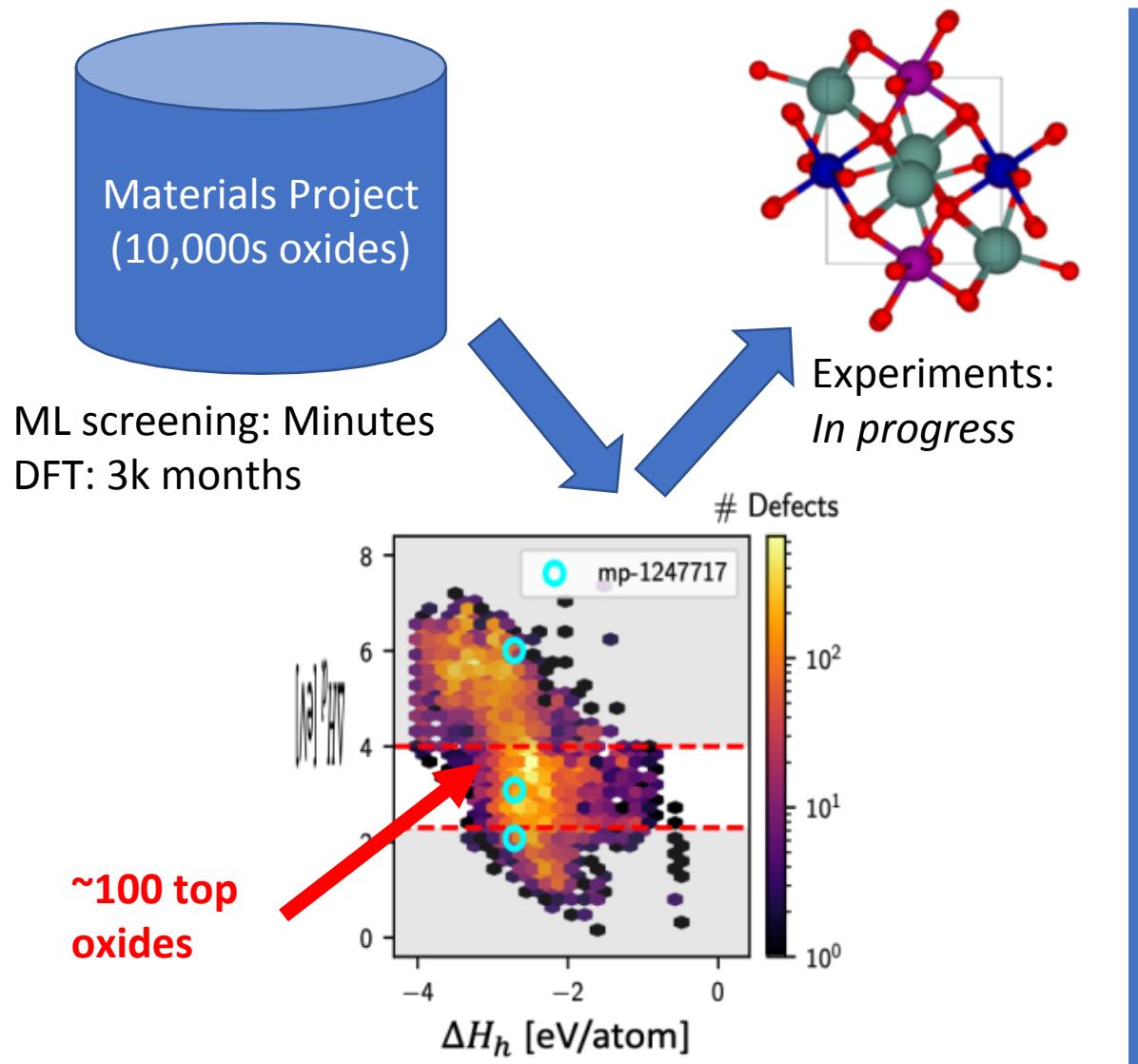
GitHub for defect GNN code:



Search or jump to...

mwitman1 / cgcnndefect Public

In conclusion, STCH oxides have been screened $\sim 10^6$ times faster than brute-force DFT search to identify promising water-splitting oxides



Significant room for future development:

- Expanded cation space
- Expanded anion space (beyond O)
- More structural diversity (2D materials)
- Probe **other applications** where vacancies are the primary driver of material utility (or failure)

Thank you for your attention. Questions?

mwitman@sandia.gov