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INTRODUCTION

Probabilistic post-closure performance assessment (PA)
of systems for deep geologic disposal of nuclear waste
requires the repeated evaluation of models which represent
complex multiphysics, multiscale phenomena across time
and length scales spanning several orders of magnitude.
These models include millions of degrees of freedom and
require hundreds of core hours to run on a high-performance
computer. The sheer cost of running such high-fidelity
models limits the number of evaluations available for
uncertainty analyses, which impacts statistical accuracy.

Uncertainty quantification (UQ) methods that leverage
multiple models, such as multilevel [1] and multifidelity [2]
methods and multimodel surrogate methods [3-5] exploit
models of varying fidelities and cost to achieve improved
computational efficiency and statistical accuracy. This paper
presents a survey and demonstration of these methods for a
repository model problem in sparsely fractured crystalline
rock. The suitability of different methods depending on
model ensemble and target uncertainty analysis is discussed,
as well as the benefits and challenges of applying these
methods to practical PA application problems.

MULTIMODEL METHODS
Sampling-based methods

A common goal in uncertainty analyses is the
computation of statistics such as the mean and variance of
key quantities of interest, e.g. the mean concentration of a
radionuclide, given uncertainties in the modeled system. For
a high-fidelity model @y, the sample mean is computed as

0, =72V, 0%, (1)

This estimator is unbiased, but its variance is V(Qy)/N; this
means the standard error in the estimator decays slowly, at a

rate of «/N . Multimodel methods aim to reduce the variance
of the estimator without incurring additional high-fidelity
model evaluations. This variance reduction is achieved by
exploiting cheaper, less accurate model evaluations in
statistical estimates.

The key concept behind sampling-based multimodel UQ
methods is introduced here with the multilevel method in the
context of two models, a high-fidelity model Qg and a low-
fidelity model @y. The low-fidelity model could be a coarser
discretization of Qp, a more idealized physics model, a
surrogate model, etc.
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The multilevel (ML) mean estimator @ u is defined as:
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This estimator is still unbiased, but its variance is now

~ ML V[Q,] V[Qy — Qy]
vjgy =+ ®

The first contribution to the variance of the ML estimator
can be made small by evaluating the low-fidelity model many
times at much lower cost. The second term will be small if V[
Qu — Q1] is small; this can occur when Qg and Q, are very
similar, e.g. as model predictions converge with mesh
refinement. If these conditions hold, the variance of the ML
estimator can achieve a much smaller (orders-of-magnitude
smaller) variance than traditional MC for the same
computational cost. Note that while this example focuses on
a two-model case, multiple models can be used by combining
estimators of the differences between subsequent models in a
telescoping sum. See [1] for further details.

Multilevel methods are limited by the fact that they rely
on a model hierarchy where the variance in the difference
between subsequent models decays as one moves through the
hierarchy toward the highest-fidelity model. This often
occurs as one refines a mesh, but if the hierarchy is instead
defined by e.g. simplifying assumptions used to define a
lower-fidelity model, this may not occur. While the low- and
high-fidelity models’ outputs may not be very close to each
other, they may still be strongly correlated. Multifidelity
(MF) methods exploit such correlations to achieve a
reduction in estimator variance, thereby relaxing multilevel
methods’ requirement of decaying variance of discrepancies
between models [2].

The multifidelity method yields an analytical expression
for the number of evaluations needed for each model in the
hierarchy that will yield the minimum variance. However,
this requires an assumption that models are ordered in a
monotonic hierarchy by fidelity. This may not apply in all
cases, for instance if there are two models with simplifying
assumptions that are not nested, i.e. one model assumes
isothermal reactions and anisotropy, and another does not
assume isothermal reactions but assumes isotropy. The
approximate control variate (ACV) methods relax the
assumption of a strict model hierarchy and allow for a more
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general ensemble of models of varying fidelity [6]. This
increased generality can also result in greater reductions in
variance relative to the more restrictive hierarchies assumed
by ML and MF, though each of the methods can outperform
the others depending on the nature of the model ensemble.
Multimodel methods determined the optimal number of
samples of each model required to achieve maximum
variance reduction in the statistical estimator. However,
estimates of variances (e.g. of the discrepancies in ML)
and/or correlations between models are required for this
optimal sample allocation. This is typically done by
performing an initial study, called a pilot study, where all
models are evaluated for a small number of samples. The
sample variances/correlations computed from this process are
used in sample allocation in place of their unknown true
values. If the computational budget is too low to adequately
refine these statistics, it can result in suboptimal sample
allocations that lessen the benefit of these methods.

Surrogate-based methods

In contrast to sampling-based methods, surrogate-based
multimodel methods focus on constructing a surrogate for the
highest-fidelity model of interest at a reduced cost by
exploiting evaluations from lower-fidelity models to
construct the surrogate. Surrogate-based approaches are
attractive in scenarios where the high-fidelity output must be
queried many more times than would be computationally
feasible, e.g. for calibration or sensitivity analysis. They are
currently the only viable option if statistics other than
moments of a quantity of interest must be computed, e.g. a
failure probability or estimation of a probability distribution
(sampling-based methods are currently limited to estimation
of the mean, standard deviation, and their combination). In
addition, multifidelity surrogates can exploit model
relationships that can’t currently be exploited by sampling-
based methods—for instance, sparsity in the discrepancy
between two models.

As with surrogates constructed using a single model’s
evaluations, multifidelity surrogates have limitations in their
applicability. For instance, commonly used surrogates that
can resolve complex model outputs, e.g. high-order
polynomial chaos expansions (PCEs) or Gaussian processes
(GPs), are limited in terms of the number of input parameters
they can be constructed over, nominally no more than ~20
inputs. (Sparse grid collocation methods can mitigate this
limitation; see e.g. [7,8].) Additionally, the accuracy of
commonly used surrogates such as Gaussian processes (GPs)
and polynomial chaos expansions (PCEs) is impeded by
discontinuities in model outputs. These limitations still exist
for the multimodel versions of these surrogates as well. Here
we will illustrate how evaluations from multiple models can
be combined to create a surrogate for a high-fidelity model at
lower cost in the context of multifidelity PCEs [3]; however,
other multimodel surrogate methods are in development; see
[4,5] for further discussion on some of these methods.

Polynomial chaos expansions (PCE) have gained
popularity in uncertainty analyses in recent years and have
been documented in detail in [9]. PCE is a stochastic
expansion method whereby the model output is expanded in
a series of polynomials that are orthogonal with respect to the
densities of the random model inputs. One advantage of PCE
is that the moments (means, variances, etc.), as well as Sobol’
indices for global sensitivity analysis (GSA), can be
computed analytically from the expansion coefficients [10].

PCE coefficients are determined either by projecting
model responses onto the basis or by solving a regression
problem. The number of evaluations required to estimate the
coefficients increases with the number of input parameters
and the order of the polynomials in the PCE, which in turn
increases with complexity of model responses. For model
problems with many inputs and complex outputs requiring
high-order PCEs, the cost of constructing an adequate
surrogate model can quickly become intractable.

To mitigate this, multifidelity PCEs (MF PCEs) exploit
a hierarchy of model fidelities and costs to reduce the
computational burden of constructing a surrogate for the
highest-fidelity model’s response [8]. We summarize how
this is done here in the context of the previous two-model
hierarchy. Let Qy and Qp take as inputs the uncertain
parameters §. The goal is to derive a PCE surrogate for Qp.
In a single-fidelity framework, the high-fidelity model is
evaluated multiple times to estimate the coefficients of the
PCE Qpy:
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where p is the order of the expansion; as p increases, more
terms are included in the expansion, requiring more model
evaluations to estimate the coefficients ;.

A MF PCE can also be derived for @y which uses
evaluations from both models in its construction. The high-
fidelity model can be represented as the low-fidelity model
corrected with a discrepancy between the two models, which
is hopefully easier to approximate than the high-fidelity
model directly:

Qu =01+ (Qn—Qp)- (%)

The MF PCE approximates Qy by constructing a PCE
for Q1 (Q1) and a PCE for the discrepancy Qy — Q, (GA) :

Qu(§) = QL(®) + Qa(d). (6)

MF PCE is computationally more efficient if Qp is
similar enough to Qp that the difference between the two
responses is simpler than Qg alone (e.g. through more rapid
decay or sparsity of coefficients). In cases where this is true,
fewer terms are required to resolve the 0, than to resolve
Qp, thereby requiring fewer evaluations of the more costly
high-fidelity model.

The MF PCE can be used in any of the ways a PCE
constructed in a single-fidelity fashion would be used, e.g. to



compute response moments or Sobol’ indices. Generalizing
to more than two models, a MF PCE can be constructed for a
hierarchy of models, indexed from i = 0 at the lowest fidelity
to i = H at the highest fidelity, as

Qu~Qo + XL, Qa, (7)
where GAL' is the PCE expansion of Q; — Q;—1.

Computational cost of multimodel methods
The computational cost of multimodel methods are compared
to single-fidelity methods applied to the high-fidelity model
by computing the number of equivalent high-fidelity model
evaluations, denoted Negyiv. This is computed by defining
the cost of each model relative to the highest fidelity model (
Ci/Cy for the ith model, where Cy is the cost of evaluating
the highest-fidelity model) by the number of evaluations of
each model:

Nequiv = Z{-I:l CL;NL" (¥
CASE STUDY

Multimodel methods will be demonstrated and analyzed
herein for a simple repository model in fractured granite,
based on the well-characterized Forsmark site in Sweden
[11]. The problem is constructed such that is reflects many of
the properties and challenges of state-of-the-art repository
simulations in fractured crystalline rock while being more
computationally tractable.

The simplified crystalline problem was defined on a
1000 x 1000 x 480 m? domain and was implemented using
PFLOTRAN. A discrete fracture network (DFN) was
generated to represent spatial uncertainty in the fractured
granite. A uniform mesh was applied to the entire domain,
and the repository was assumed to be a homogeneous region
of disturbed rock zone (DRZ), with a single cell in the center
representing buffer material and a single waste package. A
leak from the waste package occurs at a certain point in the
simulation. A glacial aquifer region was placed at the top of
the domain and quantities of interest related to the
radionuclide '>T were tracked in the aquifer as a measure of
repository performance. For more detail about the problem
specification, see [12]. A 2D vertical slice of the domain is
shown in Figure 1.
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Fig. 1. A vertical slice of the simplified crystalline domain,
taken at y = 500 m.

A model hierarchy was designed in terms of the spatial
discretization applied to the computational domain. Mesh
sizes of 10, 20 and 40 m were used. The mesh size affects the
continuum properties which are derived in the process of
converting from DFN to equivalent continuous porous
medium (ECPM), described in [13]. The continuum values
are explicitly scaled by the cell size. Additionally, when two
fractures that do not intersect are mapped to the same cell, a
false connection is created in the continuum property. The
number of false connections increases with cell size, so it is
expected that coarser meshes will exhibit increased flow
compared to the finer meshes. This effect can be seen in
Figure 2, which shows a horizontal slice of the permeability
in the x direction for the three mesh sizes.
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Fig. 2. Horizontal slices of the permeability tensor in the x-
direction for meshes with cell sizes d = 10, 20, and 40 m, from
left to right.

Parameter Description Distribution
Waste form bulk _8 1n—6
rateUNF dissolution rate log U107, 1077]
kGlacial Glacial aquifer log U[10~15,10~13]
permeability
permDRZ DRZ permeability | logU[10~1°,10~1°]
permBuffer Buffer permeability | logU[10—2°,10—17]
pBuffer Buffer porosity UJf0.3,0.5]
. Waste package
wpBreachTime breach time [yr] U[2500,10000]

Table 1. Uncertain parameters in case study.

The uncertain parameters are drawn from the crystalline
reference case described in [10], except for the time at which
the waste package breaches. This is modeled as a uniform
random variable ranging from 2500 to 10000 years.
Parameter definitions are presented in Table 1 above. Costs
of evaluating the three discretizations are reported in Table 2.

Mesh size [m] Core time [s] Relative cost
10 9822.8 1.0
20 329.7 3.36e-2
40 22.0 2.24e-3

Table 2. Absolute and relative model costs by discretization.

RESULTS
Sampling-based and surrogate-based results are
presented. All analyses were performed using Dakota [14].

Sampling-based methods



Here we consider how different sampling methods
perform in terms of their accuracy in estimating the mean of
a repository performance quantity of interest (Qol). The Qol
under consideration is the peak '?°I concentration in the
aquifer, which is the maximum concentration achieved across
the timespan of the simulation. This Qol is extracted from the
maximum '?T concentration in the aquifer achieved at each
time in the simulation, shown in Figure 3 for each of the
discretizations in the model hierarchy, evaluated at the means
of the uncertain parameter distributions.

It can be seen in Figure 3 that convergence in behavior
as the mesh is refined is not observed. This is likely because
the finer mesh has fewer (falsely) connected regions of high
permeability (and thus rapid flow), leading to decreased
dilution of '?°I as it is transported throughout the
computational domain. This leads to higher concentrations
reaching the aquifer as the mesh is refined. An initial 25-
sample pilot study indicated that this results in a lack of decay
in the variance of discrepancies between models, so we do
not expect multilevel to be the most advantageous method in
this case, despite the model hierarchy being defined by
discretization (a common use-case for the method).

Maximum '’ Concentration in Aquifer [M]

1.2e-11+

10 m cell size
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Figure 3. Maximum '?°I concentration in the aquifer as a
function of time.

Despite the lack of convergence as the mesh is refined,
the models are well correlated, which indicates that
multifidelity and ACV methods may still be advantageous.
This is borne out when we examine the projected estimator
variance, computed from the pilot study, that can be achieved
for each of these methods relative to standard Monte Carlo
(MC) with a computational budget of 100 equivalent high-
fidelity evaluations, reported in Table 3.

Projected estimator MC variance
Method . . -
variance Projected variance
Monte Carlo 1.78e-3 1.0
Multilevel 1.22e-4 15.7
Multifidelity 2.21e-5 80.6
ACV MF 2.85e-5 62.5

Table 3. Projected estimator variances for single-model and
multimodel sampling-based methods.

The pilot study suggests that MF will provide the
greatest improvement in accuracy with an estimated 80.6x
reduction in variance relative to single-model MC. The MF
variant of ACV is also expected to provide a significant

variance reduction, but not quite as great as MF. Note that,
despite its suboptimality, ML is still projected to achieve a
15.7x variance reduction relative to MC, a significant gain in
accuracy.

It can be challenging to discern a priori which
multimodel method will be most advantageous for a given set
of models due to the complex interplay of cost with
correlation and how model relationships are exploited by
each of the estimators. The pilot study can be reused to make
projections for each of the methods, so it is recommended to
obtain projected variances for each of the methods for
selecting one to use in a sampling campaign. See [15] for an
algorithmic approach to identifying an optimal estimator.

Surrogate-based methods

Here we consider how the performance of MF PCE
depends on the nature of the Qol it is constructed to represent.
Here we consider two repository performance Qols: the peak
129T concentration in the aquifer and the x location at which
that peak occurs. Construction of the MF PCE and analysis
of other performance Qols are presented in [10].

As with their single-model counterparts, commonly
deployed multimodel surrogates are reliant on continuity of
the Qols they must represent. For this case study it was found
that some of the performance Qols, including the x location
of the peak '?° concentration, exhibit discontinuities, where
discrete steps are observed for small values of kGlacial (see
Figure 4). On the other hand, the peak concentration varies
smoothly, and the outputs of each of the models exhibit
similar trends as a function of the uncertain parameters.
Based on these observations it is expected that a surrogate-
based approach will not be accurate for the peak x location,
but may be advantageous for the peak concentration.
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Figure 4. Peak '*°I concentration and x location in the
aquifer as a function of kGlacial (aquifer permeability).

This expectation is borne out when considering the
histograms for each Qol obtained from a direct sampling of
the high-fidelity (HF) model, samples from a PCE
constructed from 828 HF evaluations, and samples from a
MF PCE constructed from evaluations from all model
discretizations, shown in Figure 5. Because the surrogate is
built on an assumption that the output varies smoothly as a
function of the input parameters, we see that for the peak x
location in Figure 5 that both the HF and the MF PCE
produce a very skewed histogram which is a continuous
approximation of the discrete values achieved by the direct
sampling of the HF model.
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Figure 5. Histograms of peak '*°I concentration (left) and
peak °I x location (right) produced from high-fidelity model
evaluations, a PCE constructed from high-fidelity model
evaluations only, and a MF PCE.

On the other hand, both the HF and MF PCE are able to
reproduce the histogram for the peak concentration attained
from directly sampling the HF model. This indicates the
probability distribution for the peak concentration is well
captured by both surrogates. However, the MF PCE achieved
this accuracy at a much lower cost of 21.85 equivalent high-
fidelity evaluations (18 evaluations of the 10 m discretization,
108 of the 20 m, and 108 of the 40 m). This highlights the
potential computational benefit that can be achieved using
multimodel surrogate methods, provided the conditions
necessary for adequate accuracy are achieved and a
relationship between models can be exploited to reduce cost.
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