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INTRODUCTION
Probabilistic post-closure performance assessment (PA) 

of systems for deep geologic disposal of nuclear waste 
requires the repeated evaluation of models which represent 
complex multiphysics, multiscale phenomena across time 
and length scales spanning several orders of magnitude. 
These models include millions of degrees of freedom and 
require hundreds of core hours to run on a high-performance 
computer. The sheer cost of running such high-fidelity 
models limits the number of evaluations available for 
uncertainty analyses, which impacts statistical accuracy. 

Uncertainty quantification (UQ) methods that leverage 
multiple models, such as multilevel [1] and multifidelity [2] 
methods and multimodel surrogate methods [3-5] exploit 
models of varying fidelities and cost to achieve improved 
computational efficiency and statistical accuracy. This paper 
presents a survey and demonstration of these methods for a 
repository model problem in sparsely fractured crystalline 
rock. The suitability of different methods depending on 
model ensemble and target uncertainty analysis is discussed, 
as well as the benefits and challenges of applying these 
methods to practical PA application problems.

MULTIMODEL METHODS
Sampling-based methods

A common goal in uncertainty analyses is the 
computation of statistics such as the mean and variance of 
key quantities of interest, e.g. the mean concentration of a 
radionuclide, given uncertainties in the modeled system. For 
a high-fidelity model 𝑄𝐻, the sample mean is computed as 

𝑄𝐻 = 1
𝑁∑𝑁

𝑖=1 𝑄(𝑖)
𝐻 .         (1)

This estimator is unbiased, but its variance is 𝕍(𝑄𝐻)/𝑁; this 
means the standard error in the estimator decays slowly, at a 
rate of 𝑁. Multimodel methods aim to reduce the variance 
of the estimator without incurring additional high-fidelity 
model evaluations. This variance reduction is achieved by 
exploiting cheaper, less accurate model evaluations in 
statistical estimates.  

The key concept behind sampling-based multimodel UQ 
methods is introduced here with the multilevel method in the 
context of two models, a high-fidelity model 𝑄𝐻 and a low-
fidelity model 𝑄𝐿. The low-fidelity model could be a coarser 
discretization of 𝑄𝐻, a more idealized physics model, a 
surrogate model, etc. 

The multilevel (ML) mean estimator 𝑄
𝑀𝐿
𝐻  is defined as:

       𝑄
𝑀𝐿
𝐻 = 𝑄𝐿 + 𝑄𝐻 ― 𝑄𝐿                 =

1
𝑁𝐿

∑𝑁𝐿
𝑖=1 𝑄(𝑖)

𝐿 +
1

𝑁Δ

∑𝑁Δ
𝑗=1 𝑄(𝑗)

𝐻 ― 𝑄(𝑗)
𝐿 .      (2)

This estimator is still unbiased, but its variance is now

𝕍 𝑄
𝑀𝐿
𝐻 =

𝕍[𝑄𝐿]
𝑁𝐿

+
𝕍[𝑄𝐻 ― 𝑄𝐿]

𝑁Δ
.                  (3)

The first contribution to the variance of the ML estimator 
can be made small by evaluating the low-fidelity model many 
times at much lower cost. The second term will be small if 𝕍[
𝑄𝐻 ― 𝑄𝐿] is small; this can occur when 𝑄𝐻 and 𝑄𝐿 are very 
similar, e.g. as model predictions converge with mesh 
refinement. If these conditions hold, the variance of the ML 
estimator can achieve a much smaller (orders-of-magnitude 
smaller) variance than traditional MC for the same 
computational cost. Note that while this example focuses on 
a two-model case, multiple models can be used by combining 
estimators of the differences between subsequent models in a 
telescoping sum. See [1] for further details.

Multilevel methods are limited by the fact that they rely 
on a model hierarchy where the variance in the difference 
between subsequent models decays as one moves through the 
hierarchy toward the highest-fidelity model. This often 
occurs as one refines a mesh, but if the hierarchy is instead 
defined by e.g. simplifying assumptions used to define a 
lower-fidelity model, this may not occur. While the low- and 
high-fidelity models’ outputs may not be very close to each 
other, they may still be strongly correlated. Multifidelity 
(MF) methods exploit such correlations to achieve a 
reduction in estimator variance, thereby relaxing multilevel 
methods’ requirement of decaying variance of discrepancies 
between models [2]. 

The multifidelity method yields an analytical expression 
for the number of evaluations needed for each model in the 
hierarchy that will yield the minimum variance. However, 
this requires an assumption that models are ordered in a 
monotonic hierarchy by fidelity. This may not apply in all 
cases, for instance if there are two models with simplifying 
assumptions that are not nested, i.e. one model assumes 
isothermal reactions and anisotropy, and another does not 
assume isothermal reactions but assumes isotropy. The 
approximate control variate (ACV) methods relax the 
assumption of a strict model hierarchy and allow for a more 
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general ensemble of models of varying fidelity [6]. This 
increased generality can also result in greater reductions in 
variance relative to the more restrictive hierarchies assumed 
by ML and MF, though each of the methods can outperform 
the others depending on the nature of the model ensemble.

Multimodel methods determined the optimal number of 
samples of each model required to achieve maximum 
variance reduction in the statistical estimator. However, 
estimates of variances (e.g. of the discrepancies in ML) 
and/or correlations between models are required for this 
optimal sample allocation. This is typically done by 
performing an initial study, called a pilot study, where all 
models are evaluated for a small number of samples. The 
sample variances/correlations computed from this process are 
used in sample allocation in place of their unknown true 
values. If the computational budget is too low to adequately 
refine these statistics, it can result in suboptimal sample 
allocations that lessen the benefit of these methods.

Surrogate-based methods
In contrast to sampling-based methods, surrogate-based 

multimodel methods focus on constructing a surrogate for the 
highest-fidelity model of interest at a reduced cost by 
exploiting evaluations from lower-fidelity models to 
construct the surrogate. Surrogate-based approaches are 
attractive in scenarios where the high-fidelity output must be 
queried many more times than would be computationally 
feasible, e.g. for calibration or sensitivity analysis. They are 
currently the only viable option if statistics other than 
moments of a quantity of interest must be computed, e.g. a 
failure probability or estimation of a probability distribution 
(sampling-based methods are currently limited to estimation 
of the mean, standard deviation, and their combination). In 
addition, multifidelity surrogates can exploit model 
relationships that can’t currently be exploited by sampling-
based methods—for instance, sparsity in the discrepancy 
between two models.

As with surrogates constructed using a single model’s 
evaluations, multifidelity surrogates have limitations in their 
applicability. For instance, commonly used surrogates that 
can resolve complex model outputs, e.g. high-order 
polynomial chaos expansions (PCEs) or Gaussian processes 
(GPs), are limited in terms of the number of input parameters 
they can be constructed over, nominally no more than ~20 
inputs. (Sparse grid collocation methods can mitigate this 
limitation; see e.g. [7,8].) Additionally, the accuracy of 
commonly used surrogates such as Gaussian processes (GPs) 
and polynomial chaos expansions (PCEs) is impeded by 
discontinuities in model outputs. These limitations still exist 
for the multimodel versions of these surrogates as well. Here 
we will illustrate how evaluations from multiple models can 
be combined to create a surrogate for a high-fidelity model at 
lower cost in the context of multifidelity PCEs [3]; however, 
other multimodel surrogate methods are in development; see 
[4,5] for further discussion on some of these methods.

Polynomial chaos expansions (PCE) have gained 
popularity in uncertainty analyses in recent years and have 
been documented in detail in [9]. PCE is a stochastic 
expansion method whereby the model output is expanded in 
a series of polynomials that are orthogonal with respect to the 
densities of the random model inputs. One advantage of PCE 
is that the moments (means, variances, etc.), as well as Sobol’ 
indices for global sensitivity analysis (GSA), can be 
computed analytically from the expansion coefficients [10]. 

PCE coefficients are determined either by projecting 
model responses onto the basis or by solving a regression 
problem. The number of evaluations required to estimate the 
coefficients increases with the number of input parameters 
and the order of the polynomials in the PCE, which in turn 
increases with complexity of model responses. For model 
problems with many inputs and complex outputs requiring 
high-order PCEs, the cost of constructing an adequate 
surrogate model can quickly become intractable.

To mitigate this, multifidelity PCEs (MF PCEs) exploit 
a hierarchy of model fidelities and costs to reduce the 
computational burden of constructing a surrogate for the 
highest-fidelity model’s response [8]. We summarize how 
this is done here in the context of the previous two-model 
hierarchy. Let 𝑄𝐻 and 𝑄𝐿 take as inputs the uncertain 
parameters 𝝃. The goal is to derive a PCE surrogate for 𝑄𝐻. 
In a single-fidelity framework, the high-fidelity model is 
evaluated multiple times to estimate the coefficients of the 
PCE 𝑄𝐻:

𝑄𝐻(𝝃) ≈ 𝑄𝐻(𝝃) = 𝛽0 + ∑𝑝
𝑖=1 𝛽𝑖Ψ𝑖(𝝃), (4)

where p is the order of the expansion; as p increases, more 
terms are included in the expansion, requiring more model 
evaluations to estimate the coefficients 𝛽𝑖.

A MF PCE can also be derived for 𝑄𝐻 which uses 
evaluations from both models in its construction. The high-
fidelity model can be represented as the low-fidelity model 
corrected with a discrepancy between the two models, which 
is hopefully easier to approximate than the high-fidelity 
model directly:

𝑄𝐻 = 𝑄𝐿 + (𝑄𝐻 ― 𝑄𝐿).                (5)                                    
The MF PCE approximates 𝑄𝐻 by constructing a PCE 

for 𝑄𝐿 (𝑄𝐿) and a PCE for the discrepancy 𝑄𝐻 ― 𝑄𝐿 𝑄Δ :

        𝑄𝐻(𝝃) ≈ 𝑄𝐿(𝝃) + 𝑄Δ(𝝃).                      (6)

MF PCE is computationally more efficient if  𝑄𝐿 is 
similar enough to 𝑄𝐻 that the difference between the two 
responses is simpler than 𝑄𝐻 alone (e.g. through more rapid 
decay or sparsity of coefficients). In cases where this is true, 
fewer terms are required to resolve the   𝑄Δ than to resolve 
𝑄𝐻, thereby requiring fewer evaluations of the more costly 
high-fidelity model. 

The MF PCE can be used in any of the ways a PCE 
constructed in a single-fidelity fashion would be used, e.g. to 



compute response moments or Sobol’ indices. Generalizing 
to more than two models, a MF PCE can be constructed for a 
hierarchy of models, indexed from 𝑖 = 0 at the lowest fidelity 
to 𝑖 = 𝐻 at the highest fidelity, as

𝑄𝐻 ≈ 𝑄0 +  ∑𝐻
𝑖=1 𝑄Δ𝑖

,            (7)

where 𝑄Δ𝑖 is the PCE expansion of 𝑄𝑖 ― 𝑄𝑖―1. 

Computational cost of multimodel methods
The computational cost of multimodel methods are compared 
to single-fidelity methods applied to the high-fidelity model 
by computing the number of equivalent high-fidelity model 
evaluations, denoted 𝑁𝑒𝑞𝑢𝑖𝑣. This is computed by defining 
the cost of each model relative to the highest fidelity model (
𝐶𝑖/𝐶𝐻 for the 𝑖𝑡ℎ model, where 𝐶𝐻 is the cost of evaluating 
the highest-fidelity model) by the number of evaluations of 
each model: 

                       𝑁𝑒𝑞𝑢𝑖𝑣 = ∑𝐻
𝑖=1

𝐶𝑖

𝐶𝐻
𝑁𝑖.                          (8)

CASE STUDY
Multimodel methods will be demonstrated and analyzed 

herein for a simple repository model in fractured granite, 
based on the well-characterized Forsmark site in Sweden 
[11]. The problem is constructed such that is reflects many of 
the properties and challenges of state-of-the-art repository 
simulations in fractured crystalline rock while being more 
computationally tractable.

The simplified crystalline problem was defined on a 
1000 x 1000 x 480 m3 domain and was implemented using 
PFLOTRAN. A discrete fracture network (DFN) was 
generated to represent spatial uncertainty in the fractured 
granite. A uniform mesh was applied to the entire domain, 
and the repository was assumed to be a homogeneous region 
of disturbed rock zone (DRZ), with a single cell in the center 
representing buffer material and a single waste package. A 
leak from the waste package occurs at a certain point in the 
simulation. A glacial aquifer region was placed at the top of 
the domain and quantities of interest related to the 
radionuclide 129I were tracked in the aquifer as a measure of 
repository performance. For more detail about the problem 
specification, see [12].   A 2D vertical slice of the domain is 
shown in Figure 1.

Fig. 1. A vertical slice of the simplified crystalline domain, 
taken at y = 500 m.

A model hierarchy was designed in terms of the spatial 
discretization applied to the computational domain. Mesh 
sizes of 10, 20 and 40 m were used. The mesh size affects the 
continuum properties which are derived in the process of 
converting from DFN to equivalent continuous porous 
medium (ECPM), described in [13]. The continuum values 
are explicitly scaled by the cell size. Additionally, when two 
fractures that do not intersect are mapped to the same cell, a 
false connection is created in the continuum property. The 
number of false connections increases with cell size, so it is 
expected that coarser meshes will exhibit increased flow 
compared to the finer meshes. This effect can be seen in 
Figure 2, which shows a horizontal slice of the permeability 
in the x direction for the three mesh sizes. 

Fig. 2. Horizontal slices of the permeability tensor in the x-
direction for meshes with cell sizes d = 10, 20, and 40 m, from 
left to right.

Parameter Description Distribution
rateUNF Waste form bulk 

dissolution rate log 𝒰[10―8, 10―6]

kGlacial Glacial aquifer 
permeability log 𝒰[10―15, 10―13]

permDRZ DRZ permeability log 𝒰[10―19, 10―16]
permBuffer Buffer permeability log 𝒰[10―20, 10―17]

pBuffer Buffer porosity 𝒰[0.3, 0.5]

wpBreachTime Waste package 
breach time [yr] 𝒰[2500,10000]

Table 1. Uncertain parameters in case study.

The uncertain parameters are drawn from the crystalline 
reference case described in [10], except for the time at which 
the waste package breaches. This is modeled as a uniform 
random variable ranging from 2500 to 10000 years. 
Parameter definitions are presented in Table 1 above. Costs 
of evaluating the three discretizations are reported in Table 2.

Mesh size [m] Core time [s] Relative cost
10 9822.8 1.0
20 329.7 3.36e-2
40 22.0 2.24e-3

Table 2. Absolute and relative model costs by discretization.

RESULTS 
Sampling-based and surrogate-based results are 

presented. All analyses were performed using Dakota [14].

Sampling-based methods



Here we consider how different sampling methods 
perform in terms of their accuracy in estimating the mean of 
a repository performance quantity of interest (QoI). The QoI 
under consideration is the peak 129I concentration in the 
aquifer, which is the maximum concentration achieved across 
the timespan of the simulation. This QoI is extracted from the 
maximum 129I concentration in the aquifer achieved at each 
time in the simulation, shown in Figure 3 for each of the 
discretizations in the model hierarchy, evaluated at the means 
of the uncertain parameter distributions.

It can be seen in Figure 3 that convergence in behavior 
as the mesh is refined is not observed. This is likely because 
the finer mesh has fewer (falsely) connected regions of high 
permeability (and thus rapid flow), leading to decreased 
dilution of 129I as it is transported throughout the 
computational domain. This leads to higher concentrations 
reaching the aquifer as the mesh is refined. An initial 25-
sample pilot study indicated that this results in a lack of decay 
in the variance of discrepancies between models, so we do 
not expect multilevel to be the most advantageous method in 
this case, despite the model hierarchy being defined by 
discretization (a common use-case for the method).

Figure 3. Maximum 129I concentration in the aquifer as a 
function of time.

Despite the lack of convergence as the mesh is refined, 
the models are well correlated, which indicates that 
multifidelity and ACV methods may still be advantageous. 
This is borne out when we examine the projected estimator 
variance, computed from the pilot study, that can be achieved 
for each of these methods relative to standard Monte Carlo 
(MC) with a computational budget of 100 equivalent high-
fidelity evaluations, reported in Table 3. 

Method Projected estimator 
variance

MC variance
Projected variance

Monte Carlo 1.78e-3 1.0
Multilevel 1.22e-4 15.7

Multifidelity 2.21e-5 80.6
ACV MF 2.85e-5 62.5

Table 3. Projected estimator variances for single-model and 
multimodel sampling-based methods.

The pilot study suggests that MF will provide the 
greatest improvement in accuracy with an estimated 80.6x 
reduction in variance relative to single-model MC. The MF 
variant of ACV is also expected to provide a significant 

variance reduction, but not quite as great as MF. Note that, 
despite its suboptimality, ML is still projected to achieve a 
15.7x variance reduction relative to MC, a significant gain in 
accuracy. 

It can be challenging to discern a priori which 
multimodel method will be most advantageous for a given set 
of models due to the complex interplay of cost with 
correlation and how model relationships are exploited by 
each of the estimators. The pilot study can be reused to make 
projections for each of the methods, so it is recommended to 
obtain projected variances for each of the methods for 
selecting one to use in a sampling campaign. See [15] for an 
algorithmic approach to identifying an optimal estimator.

Surrogate-based methods
Here we consider how the performance of MF PCE 

depends on the nature of the QoI it is constructed to represent. 
Here we consider two repository performance QoIs: the peak 
129I concentration in the aquifer and the x location at which 
that peak occurs. Construction of the MF PCE and analysis 
of other performance QoIs are presented in [10].

As with their single-model counterparts, commonly 
deployed multimodel surrogates are reliant on continuity of 
the QoIs they must represent. For this case study it was found 
that some of the performance QoIs, including the x location 
of the peak 129I concentration, exhibit discontinuities, where 
discrete steps are observed for small values of kGlacial (see 
Figure 4). On the other hand, the peak concentration varies 
smoothly, and the outputs of each of the models exhibit 
similar trends as a function of the uncertain parameters. 
Based on these observations it is expected that a surrogate-
based approach will not be accurate for the peak x location, 
but may be advantageous for the peak concentration.

Figure 4. Peak 129I concentration and x location in the 
aquifer as a function of kGlacial (aquifer permeability).

This expectation is borne out when considering the 
histograms for each QoI obtained from a direct sampling of 
the high-fidelity (HF) model, samples from a PCE 
constructed from 828 HF evaluations, and samples from a 
MF PCE constructed from evaluations from all model 
discretizations, shown in Figure 5. Because the surrogate is 
built on an assumption that the output varies smoothly as a 
function of the input parameters, we see that for the peak x 
location in Figure 5 that both the HF and the MF PCE 
produce a very skewed histogram which is a continuous 
approximation of the discrete values achieved by the direct 
sampling of the HF model. 



Figure 5. Histograms of peak 129I concentration (left) and 
peak 129I x location (right) produced from high-fidelity model 
evaluations, a PCE constructed from high-fidelity model 
evaluations only, and a MF PCE. 

On the other hand, both the HF and MF PCE are able to 
reproduce the histogram for the peak concentration attained 
from directly sampling the HF model. This indicates the 
probability distribution for the peak concentration is well 
captured by both surrogates. However, the MF PCE achieved 
this accuracy at a much lower cost of 21.85 equivalent high-
fidelity evaluations (18 evaluations of the 10 m discretization, 
108 of the 20 m, and 108 of the 40 m). This highlights the 
potential computational benefit that can be achieved using 
multimodel surrogate methods, provided the conditions 
necessary for adequate accuracy are achieved and a 
relationship between models can be exploited to reduce cost.
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