Non-destructive morphological evaluation of a scaled woven thermal protection system (WTPS)
IS a reliable tool to build predictive response models for multi-physics simulations. The micro-
and meso-scale geometry is first captured with X-ray computed tomography, then the relevant
regions of interest must be segmented from the raw data. Thermal performance is highly
connected to weave orientation and accurate capture of the directionality of the fiber-woven
tows Is critical to correct material property imposition for simulation. This study explores deep
convolutional neural networks (DCNN) to extract warp- and weft-oriented tows and compares
their respective performance in the texture-based segmentation task. The results of the
segmentation methods are then evaluated for geometric and transport effective properties
compared to a reference segmentation. We showed that U-Net, MCDN (V-Net), and MS-D
Network can produce highly accurate segmentations of the warp, weft, and matrix phases of
both a loose and compact weave. Probability maps from the MCDN showed that effective
properties will vary at most 10% due to segmentation uncertainty. The analysis concluded that
poor accuracy to diffusive effective properties is linked to a segmentation method's ability to
accurately capture the weave volume fraction of the material phase.

Introduction

This study puts emphasis on woven thermal protection systems that are highly compact, have
an intertwined tow-architecture, and overlap between ply layers. Scanner improvements have
led to accessible high-fidelity data acquisition at university-level facilities and the ability to digest
and discriminate relevant features within large image files (>10 GB) is a critically important and
evolving area of research. Composites pose a unique challenge, as it is often difficult to
distinguish between key phases and isolate tow direction without arduous manual semantic
segmentation through possibly thousands of slices [1-2]. Of particular interest to simulating
WTPS is capturing the mesoscale, or tow-scale, as its geometry strongly influences the
effective material properties [3]. This begins with isolating the warp and weft fabric tows, then
assigning relevant constitutive properties approximating the microstructure. While there is
visibly no difference in intensity between the tows’ directionality (Fig. 1a), machine learning
relies on artificial neural networks to discriminate on the mesoscale between the warp and weft
tows using shape and texture information. Two material architectures with distinct fiber volume
fractions are selected, in order to assess method performance on structures of largely different
compactness. This is an analysis of imperfect as-manufactured weaves that gives greater
insight into DCNN performance unbiased by having a pristine weave.
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Figure 1. Geometry and phases of the compact and loose coupons. (a) -
(c) represent the compact coupon, (d) - (f) are the loose. Each
segmentation is 3-phases representing warp-, weft-tows, and matrix.

Method and Setup

Through either learned or predisposed filters, ML strategies semantically segment low-intensity
contrast images based on per-voxel intensity, texture, and contribution to larger shapes.
Explored and compared is a sampling of vetted, contemporary, and developing machine
learning algorithms tasked with segmenting the warp, weft, and matrix phases of the WTPS
coupons. Each method uses unique training parameters for inference, discussed in the results
along with metrics to evaluate their performance. The segmentation methods evaluated are: U-
Net implemented in Dragonfly, structure tensor (ST), Monte Carlo Dropout Network (MCDN),
mixed-scale dense network (MS-D), non-local means (NLM), and Random Forest (RF). All
machine learning methods are trained with the same pre-labeled reference segmentation, and
infer upon a previously unseen volume to evaluate their error. With the complete compact
volume segmented, finite element simulations are performed with multi-physics code Sierra/Aria
[4] to connect choice of method with resulting effective properties. Effective thermal conductivity
(TC) and tortuosity (Tort) are calculated in the in-plane and (IP) out-of-plane (OOP) directions
by solving the diffusion residual of the governing energy equation [3].
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(a) Compact effective properties and MCDN show less than 5% difference in

The resulting segmentations are shown for the compact weave in Fig. 2 and error tabulated in
the associated table. The U-Net implemented in Dragonfly is very accurate on the compact
weave. Small errors in labeling can be seen in Fig. 2c, occurring largely at warp and weft
intersections, where a tow will move in the OOP direction, reducing the accuracy of the CNN
filters as it is trained primarily on the opposing directionality of the warp and weft tows. The
result of the structure tensor calculation is viewed in Fig. 2d, and while providing lower accuracy
compared to its ML counterparts, the ST performed satisfactorily with ample texture-based
information. From the RF segmentation, the compact weave ultimately gave the worst results in
the study as indicated by Fig. 2g. In the compact weave, the highly-accurate MS-D does a
notably better job retaining more matrix-phase information than U-Net and MCDN, shown in Fig.
2e, capturing more of the small pixels. The NLM segmentation is shown in Fig. 2f, where one
can generally see the main features of the warp and weft tows, noted by that the algorithm can
break down in the warp-weft interface, as a sharp change in texture information. Overall, the
MCDN achieved high scores for both the loose and compact weave compared to its U-Net
counterpart, making better use of that volumetric training data.

(h) MCDN

Weave U-Net ST MS-D NLM RF MCDN
Pixel (%) 017 81.8 933 77.8 675 91.6
Rand (%) Compact 87.2 755 89.9 723 574  87.2
Jaccard (%) 84.7 TL.7T 876 67.8 50.6 84.5

Figure 2. Accuracy of segmentation techniques applied to compact TPS.
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Conclusions

Although the reference segmentation is still prone to researcher’s subjectivity in labeling, the U-
Net, MCDN, and MS-D, proved highly-accurate in segmenting warp / weft / and matrix classes in
the compact WTPS. Non-NN approaches such as ST benefit largely from minimal parameter
tuning, and the Fast RF allows for high levels of control and customization of a robust NN
architecture, though lack of accuracy is shown in this study. Depending on a researcher's
available computation resources, labeled training data, and tolerance for parameter tuning, each
segmentation method has its own benefits for low contrast weave segmentation. For the U-Net,
MS-D and MCDN, any differences in weave volume fraction is largely due to the
misclassification of micro-voids, resulting in small variations in weave volume in the volumetric
mesh. ST and NLM both carried the highest deviations in effective properties which is clearly
identifiable with large differences in weave volume fraction.
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