
Deep Learning Segmentation of X-Ray Computed 
Tomography of Woven Composites

Collin Foster 

Non-destructive morphological evaluation of a scaled woven thermal protection system (WTPS) 
is a  reliable  tool  to build predictive  response models  for multi-physics simulations. The micro- 
and meso-scale geometry is first captured with X-ray computed tomography, then the relevant 
regions  of  interest  must  be  segmented  from  the  raw  data.  Thermal  performance  is  highly 
connected  to  weave  orientation  and  accurate  capture  of  the  directionality  of  the  fiber-woven 
tows  is critical  to correct material property  imposition  for simulation. This study explores deep 
convolutional neural networks  (DCNN)  to extract warp- and weft-oriented  tows and compares 
their  respective  performance  in  the  texture-based  segmentation  task.  The  results  of  the 
segmentation  methods  are  then  evaluated  for  geometric  and  transport  effective  properties 
compared  to  a  reference  segmentation.  We  showed  that  U-Net,  MCDN  (V-Net),  and  MS-D 
Network  can produce highly accurate  segmentations of  the warp, weft,  and matrix  phases of 
both  a  loose  and  compact  weave.  Probability  maps  from  the  MCDN  showed  that  effective 
properties will vary at most 10% due to segmentation uncertainty. The analysis concluded that 
poor  accuracy  to  diffusive  effective  properties  is  linked  to  a  segmentation method's  ability  to 
accurately capture the weave volume fraction of the material phase.

Overview

Introduction
This study puts emphasis on woven thermal protection systems that are highly compact, have 
an intertwined tow-architecture, and overlap between ply  layers.  Scanner improvements have 
led to accessible high-fidelity data acquisition at university-level facilities and the ability to digest 
and discriminate relevant features within large image files (>10 GB) is a critically important and 
evolving  area  of  research.  Composites  pose  a  unique  challenge,  as  it  is  often  difficult  to 
distinguish  between  key  phases  and  isolate  tow  direction  without  arduous  manual  semantic 
segmentation  through  possibly  thousands  of  slices  [1-2].  Of  particular  interest  to  simulating 
WTPS  is  capturing  the  mesoscale,  or  tow-scale,  as  its  geometry  strongly  influences  the 
effective material properties [3]. This begins with  isolating the warp and weft  fabric  tows,  then 
assigning  relevant  constitutive  properties  approximating  the  microstructure.  While  there  is 
visibly  no  difference  in  intensity  between  the  tows’  directionality  (Fig.  1a),  machine  learning 
relies on artificial neural networks to discriminate on the mesoscale between the warp and weft 
tows using shape and texture information. Two material architectures with distinct fiber volume 
fractions are selected, in order to assess method performance on structures of largely different 
compactness.  This  is  an  analysis  of  imperfect  as-manufactured  weaves  that  gives  greater 
insight into DCNN performance unbiased by having a pristine weave. 

Through either learned or predisposed filters, ML strategies semantically segment low-intensity 
contrast images based on per-voxel intensity, texture, and contribution to larger shapes. 
Explored and compared is a sampling of vetted, contemporary, and developing machine 
learning algorithms tasked with segmenting the warp, weft, and matrix phases of the WTPS 
coupons. Each method uses unique training parameters for inference, discussed in the results 
along with metrics to evaluate their performance. The segmentation methods evaluated are: U-
Net implemented in Dragonfly, structure tensor (ST), Monte Carlo Dropout Network (MCDN), 
mixed-scale dense network (MS-D), non-local means (NLM), and Random Forest (RF). All 
machine learning methods are trained with the same pre-labeled reference segmentation, and 
infer upon a previously unseen volume to evaluate their error. With the complete compact 
volume segmented, finite element simulations are performed with multi-physics code Sierra/Aria 
[4] to connect choice of method with resulting effective properties. Effective thermal conductivity 
(TC) and tortuosity (Tort) are calculated in the in-plane and (IP) out-of-plane (OOP) directions 
by solving the diffusion residual of the governing energy equation [3].

Method and Setup

The resulting segmentations are shown for the compact weave in Fig. 2 and error tabulated in 
the  associated  table.  The  U-Net  implemented  in  Dragonfly  is  very  accurate  on  the  compact 
weave.  Small  errors  in  labeling  can  be  seen  in  Fig.  2c,  occurring  largely  at  warp  and  weft 
intersections, where a  tow will move  in  the OOP direction,  reducing  the accuracy of  the CNN 
filters  as  it  is  trained  primarily  on  the  opposing  directionality  of  the warp  and weft  tows.  The 
result of the structure tensor calculation is viewed in Fig. 2d, and while providing lower accuracy 
compared  to  its  ML  counterparts,  the  ST  performed  satisfactorily  with  ample  texture-based 
information. From the RF segmentation, the compact weave ultimately gave the worst results in 
the  study  as  indicated  by  Fig.  2g.  In  the  compact  weave,  the  highly-accurate MS-D  does  a 
notably better job retaining more matrix-phase information than U-Net and MCDN, shown in Fig. 
2e, capturing more of  the small pixels. The NLM segmentation is shown in Fig. 2f, where one 
can generally see the main features of the warp and weft tows, noted by that the algorithm can 
break down  in  the warp-weft  interface, as a sharp change  in  texture  information. Overall,  the 
MCDN  achieved  high  scores  for  both  the  loose  and  compact  weave  compared  to  its  U-Net 
counterpart, making better use of that volumetric training data.

Results

The heat map shown in Fig. 3 shows the effective 
properties  of  each  method  taken  as  a  percent 
difference  from  the  reference  segmentation.  A 
total  variation  of  at  most  15%  in  the  compact 
weave  is  observed,  suggesting  overall  that  all 
segmentation  methods  provide  satisfactorily 
predictions  of  effective  properties.  Generally 
shown  in  Fig.  3  the  OOP  properties  exhibited 
higher  deviation  from  the  reference  compared  to 
IP  due  the  fact  that  in  both  the  multi-layer 
coupons the  largest source of error was at  layer-
interfaces,  shifting  OOP  diffusion  estimations. 
Highly  accurate  methods  such  as  U-Net,  MS-D, 
and  MCDN  show  less  than  5%  difference  in 
effective  properties  when  compared  to  the 
reference,  and  near  zero  difference  in  weave 
volume  fraction.  Deviations  in  weave  volume 
fraction  will  impact  the  effective  properties  by 
obstructing  thermal  pathways  and  hindering 
particle diffusion through the matrix phase. 

Although the reference segmentation is still prone to researcher’s subjectivity in labeling, the U-
Net, MCDN, and MS-D, proved highly-accurate in segmenting warp / weft / and matrix classes in 
the  compact WTPS. Non-NN approaches  such  as ST  benefit  largely  from minimal  parameter 
tuning,  and  the  Fast  RF  allows  for  high  levels  of  control  and  customization  of  a  robust  NN 
architecture,  though  lack  of  accuracy  is  shown  in  this  study.  Depending  on  a  researcher's 
available computation resources, labeled training data, and tolerance for parameter tuning, each 
segmentation method has its own benefits for low contrast weave segmentation. For the U-Net, 
MS-D  and  MCDN,  any  differences  in  weave  volume  fraction  is  largely  due  to  the 
misclassification of micro-voids, resulting  in small variations  in weave volume in  the volumetric 
mesh. ST and NLM both carried  the highest deviations  in effective properties which  is  clearly 
identifiable with large differences in weave volume fraction.

Conclusions

Figure 3.  Results  of  effective 
property calculations represented as 
percent  difference  from  reference 
segmentation. 
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Figure 1. Geometry and phases of the compact and loose coupons. (a) - 
(c)  represent  the  compact  coupon,  (d)  -  (f)  are  the  loose.  Each 
segmentation is 3-phases representing warp-, weft-tows, and matrix.

Figure 2. Accuracy of segmentation techniques applied to compact TPS. 
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