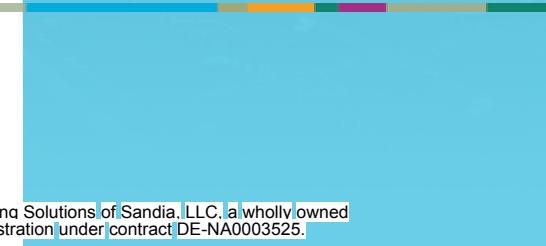
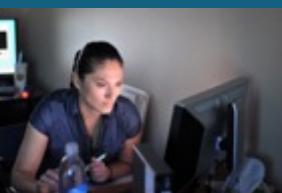
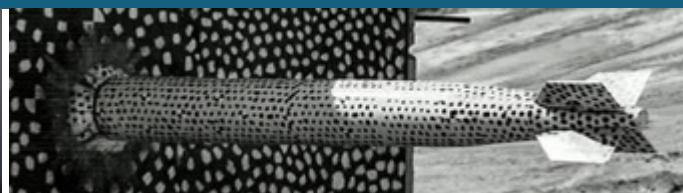


Sandia
National
Laboratories

Parallel Memory-Efficient Computation of Symmetric Higher-Order Joint Moment Tensors



Zitong Li
liz20@wfu.edu
(Wake Forest University)

Hemanth Kolla
hnkolla@sandia.gov
(Sandia National Laboratories)

Eric Phipps

etphipp@sandia.gov

Acknowledgments

- ExaLearn Co-design Center, part of the Exascale Computing Project (ECP), U.S. Dept. of Energy Office of Science & National Nuclear Security Administration.
- Base Math Program, Advanced Scientific Computing Research (ASCR), U.S. Dept. of Energy Office of Science.
- Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., for the U.S. Dept. of Energy's National Nuclear Security Administration.
- The views expressed in this presentation do not necessarily represent the views of the U.S. Department of Energy or the United States Government .

Outline

1. Higher-order joint moments and cumulants.
2. Computational aspects and scientific data.
3. Our algorithmic contributions.
4. HPC implementations.
5. Results.

1. Higher-order joint moments and cumulants.
2. Computational aspects and scientific data.
3. Our algorithmic contributions.
4. HPC implementations.
5. Results.

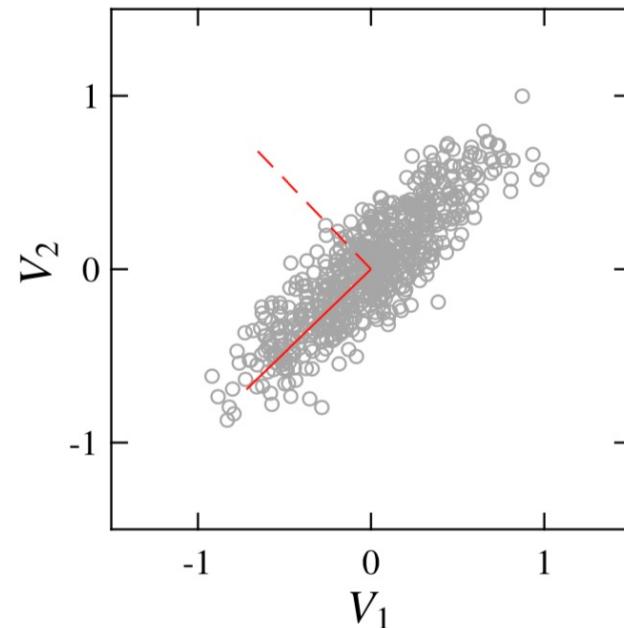
- Scientific analyses rarely look at marginal/joint moments higher than 2nd (variance/covariance).
 - Financial modelling has used coskewness and cokurtosis.
- For multi-variate non-Gaussian statistics important information is present in higher joint moments.
- Definition: For a vector of random variables, $[\tilde{x}_1, \tilde{x}_1, \dots, \tilde{x}_c]$, centered around mean i.e. $\mathbb{E}(\tilde{x}_1) = 0$:
 - Moments: $\tilde{m}_{i,j} = \mathbb{E}(\tilde{x}_i \tilde{x}_j)$, $\tilde{m}_{i,j,k} = \mathbb{E}(\tilde{x}_i \tilde{x}_j \tilde{x}_k)$, $\tilde{m}_{i,j,k,l} = \mathbb{E}(\tilde{x}_i \tilde{x}_j \tilde{x}_k \tilde{x}_l)$ where $i, j, k, l \in \{1, \dots, c\}$
 - Cumulants: $q_{i,j} = \tilde{m}_{i,j}$, $q_{i,j,k} = \tilde{m}_{i,j,k}$, $q_{i,j,k,l} = \tilde{m}_{i,j,k,l} - \tilde{m}_{i,j} \tilde{m}_{k,l} - \tilde{m}_{i,k} \tilde{m}_{j,l} - \tilde{m}_{i,l} \tilde{m}_{j,k}$,
- If the random variables are joint-Gaussian, all cumulants of order > 2 are zero.
- A d^{th} -order moment/cumulant is a 'supersymmetric' tensor of order- d :
 - e.g. for a 3rd-order moment, $\tilde{m}_{i,j,k} = \tilde{m}_{i,k,j} = \tilde{m}_{j,i,k} = \tilde{m}_{j,k,i} = \tilde{m}_{k,i,j} = \tilde{m}_{k,j,i}$ for any i, j, k .

Applications of higher-order joint moments

- Hitherto mostly used in financial modelling; portfolio risk assessment and asset pricing.
- Independent Component Analysis (ICA) algorithms based on eigen decomposition of 4th-order cumulants (Cardoso 1989, Comon & Cardoso 1990).
- ICA has been used for assessment of climate models (Fodor & Kamath 2003), source identification in stream water temperatures (Middleton *et al.*, 2015).
- Hyperspectral imaging: band selection and small target detection (Geng *et al.*, 2015, Głomb *et al.*, 2018), ICA-based dimensionality reduction (Wang & Chang 2006).
- Medical electrodiagnostics: artifact detection in EEG (Delorme *et al.*, 2007), feature identification in EMG (Domino *et al.*, 2019), feature extraction and classification in ECG (Yu & Chou 2008, Kutlu & Kuntalp 2012).
- Anomaly detection in multi-variate data (Peña & Prieto 2001, Konduri *et al.*, 2019).

Information in higher-order statistical moments

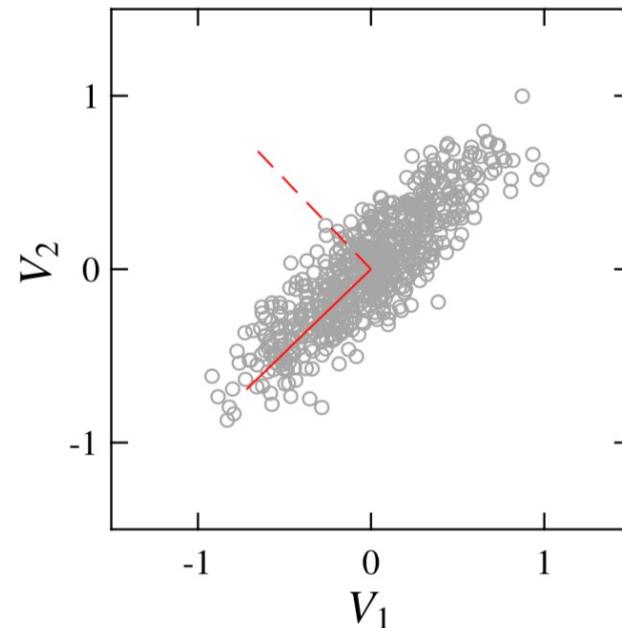
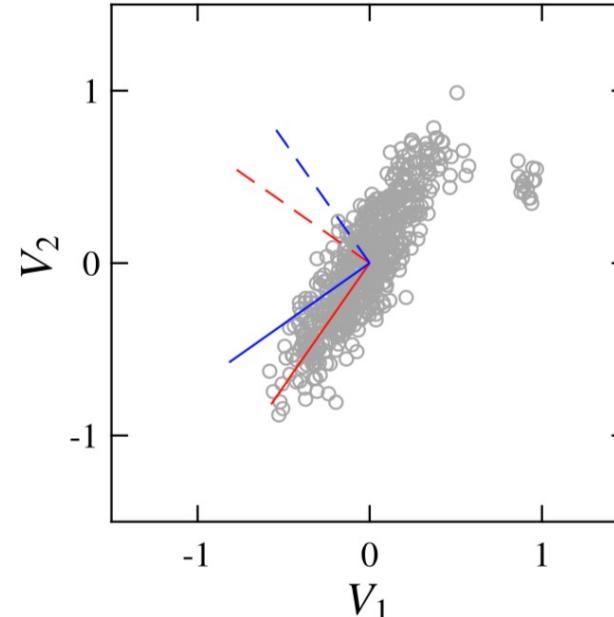
For non-Gaussian multi-variate statistical processes higher-order joint moments are informative
(co-skewness is 3rd-order tensor, co-kurtosis is 4th-order tensor)



Red: Eigenvectors of Covariance (Principal Component Analysis). Denote directions of maximal variance

Information in higher-order statistical moments

For non-Gaussian multi-variate statistical processes higher-order joint moments are informative
(co-skewness is 3rd-order tensor, co-kurtosis is 4th-order tensor)

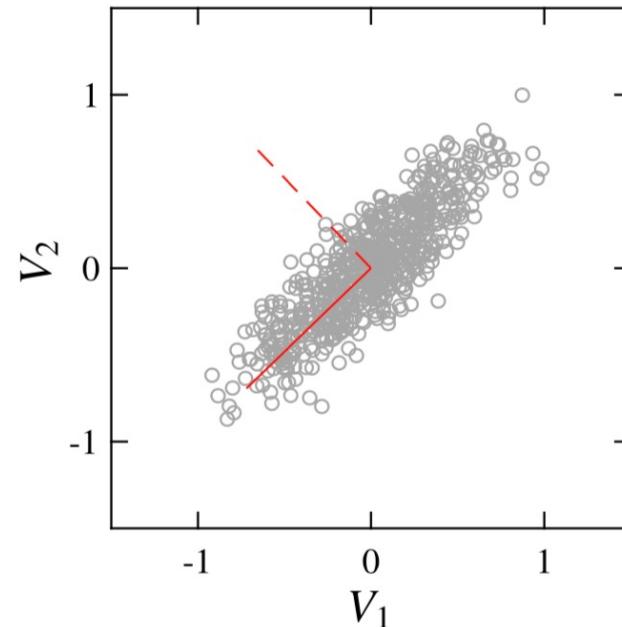
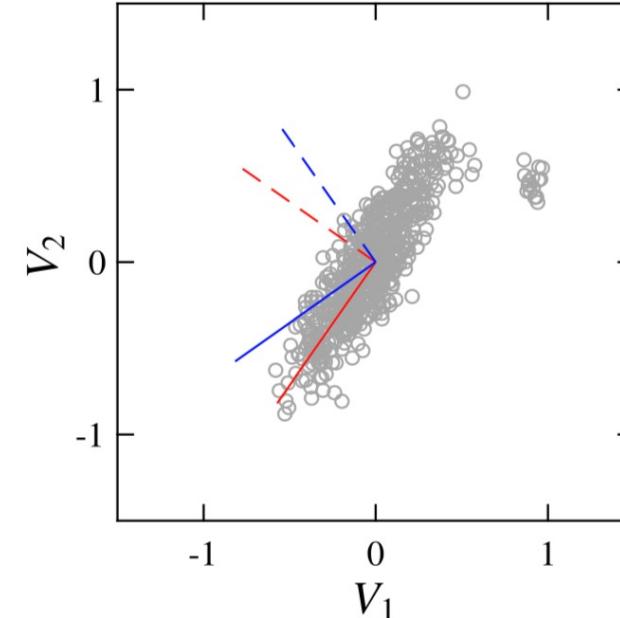
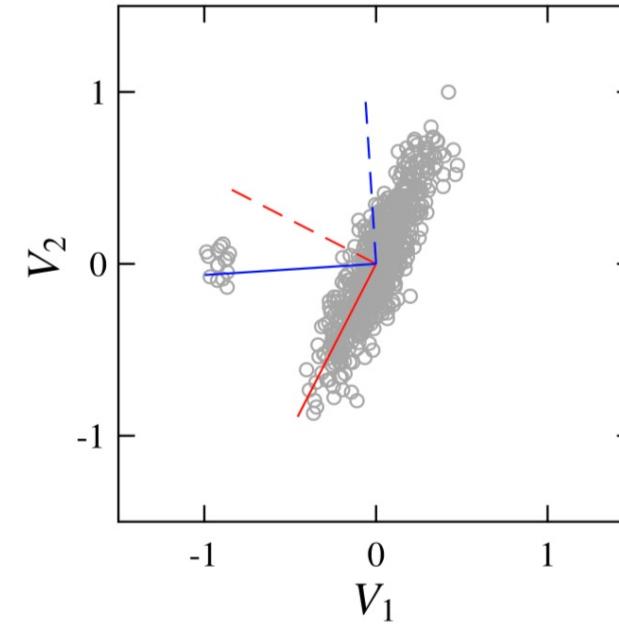


Red: Eigenvectors of Covariance (Principal Component Analysis). Denote directions of maximal variance

Blue: 'Principal Kurtosis Vectors'. Obtained through HOSVD of co-kurtosis tensor.

Information in higher-order statistical moments

PCA vectors not sensitive to outliers, Principal Kurtosis Vectors are.

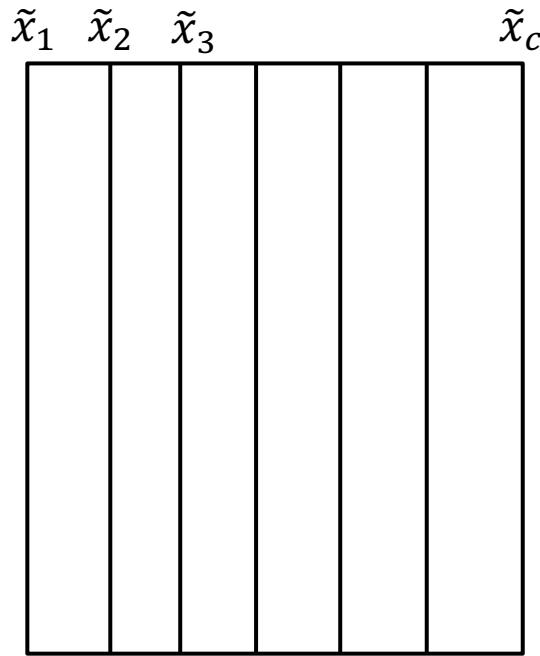


Red: Eigenvectors of Covariance (Principal Component Analysis). Denote directions of maximal variance

Blue: 'Principal Kurtosis Vectors'. Obtained through HOSVD of co-kurtosis tensor.

1. Higher-order joint moments and cumulants.
2. Computational aspects and scientific data.
3. Our algorithmic contributions.
4. HPC implementations.
5. Results.

Naïve computation of moment tensor

$$X \in \mathbb{R}^{r \times c}$$


```

for i1 = 1:c
  for i2 = 1:c
    .....
    for id = 1:c
      for row = 1:r
        mi1,i2,..,id += X(row,i1)*....*X(row,id)
    
```

- Input matrix, r – grid points, time steps
- Naïve computation of d^{th} -order moment .
- Typically $r \gg c$
- Computational complexity $\sim \mathcal{O}(rdc^d)$.

Leveraging symmetry

- Symmetry: Full moment tensor has c^d elements, but many are duplicated

- Number of unique elements: $\binom{c+d-1}{d}$

- Blocked Compact Symmetric Storage (BCSS) (Schatz et al., 2014).

- Number of blocks to compute: $\binom{(c/s) + d - 1}{d}$

- Number of elements per block: s^d

- Number of elements to be computed: $s^d \binom{(c/s) + d - 1}{d}$

- Potential savings $\sim \mathcal{O}(d!)$

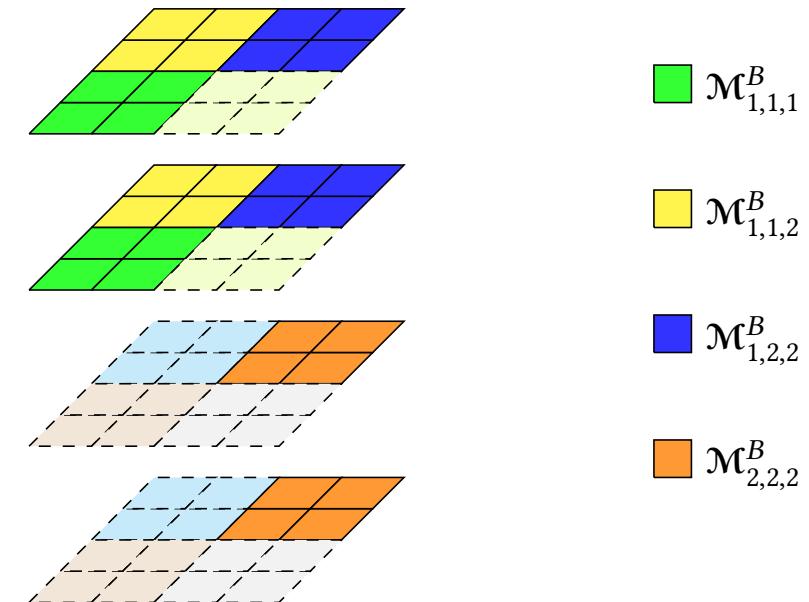
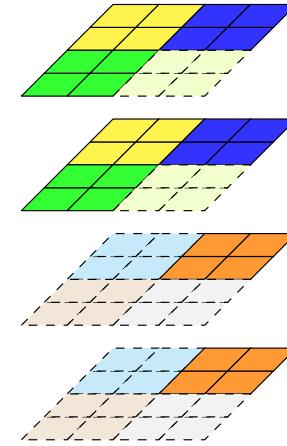


Fig. A symmetric 4x4x4 tensor divided into 8 blocks of 2x2x2 as per the BCSS format

Leveraging symmetry

- Domino et al., (2018) leverage symmetry and BCSS to compute only unique subset of blocks.
- Focus was on computation of cumulant tensors:
 - Presented a formula for $\mathcal{C}_d = f(\mathcal{M}_d, \mathcal{C}_2, \dots, \mathcal{C}_{d-2})$
 - Involves sum of outer-products of $\mathcal{C}_2, \dots, \mathcal{C}_{d-2}$
- Compute moment tensor (\mathcal{M}_d) subblocks using nested loops
- Parallelize along the row dimension
- Speedup of $\mathcal{M}_4 \sim 24$ (relative to naïve full tensor computation)
- Speedup of $\mathcal{C}_4 \sim 100$



$\mathcal{M}_{1,1,1}^B$
 $\mathcal{M}_{1,1,2}^B$
 $\mathcal{M}_{1,2,2}^B$
 $\mathcal{M}_{2,2,2}^B$

```

for i1 = 1:s
  for i2 = 1:s
    .....
    for id = 1:s
      for row = 1:r
        mi1,i2,..id += X(row,i1)*....*X(row,id)
    
```

1. Higher-order joint moments and cumulants.
2. Computational aspects and scientific data.
3. Our algorithmic contributions.
4. HPC implementations.
5. Results.

Refactoring of moment tensor block computation

- We propose refactoring using following ingredients:

- $x_j^{\circ d} = \underbrace{x_j \circ x_j \circ \cdots x_j}_{(d\text{-way outer product})}$

- Matricisation of a d-way symmetric tensor: $Mat_p : \mathbb{R}^{(c \times c \times \cdots c)} \rightarrow \mathbb{R}^{c^p \times c^{d-p}}$
- Matrix Khatri-Rao product \odot - Kronecker product of individual columns of two matrices
- Motivation: \mathcal{M}_d can be expressed as sum of outer products of row vectors of X (Sherman & Kolda 2020):

- $\mathcal{M}_d = \frac{1}{r} \sum_{j=1}^r x_j^{\circ d}$, where $x_j = X[j, :]$,

- Can be easily pictured for covariance: $\mathcal{M}_2 = 1/r (X^T X)$

- Final result (proof & details in paper): $Mat_p(\mathcal{M}) = \frac{1}{r} \left(\bigodot^p X^T \right) \left(\bigodot^{d-p} X^T \right)^T$
- Recommendation: $p = d/2$

Refactoring of moment tensor block computation

- Refactored expression applies identically to sub moment tensor sub blocks: $Mat_p(\mathcal{M}) = \frac{1}{r} \left(\bigodot^p X^T \right) \left(\bigodot^{d-p} X^T \right)^T$
 - Input would be column slices of X instead of the entire matrix

- Computational complexity:

$$\begin{array}{c}
 \text{Khatri-Rao products} \quad \downarrow \\
 (2rs^{d/2} + (2r-1)s^d) \binom{(c/s)+d-1}{d} .
 \end{array}$$

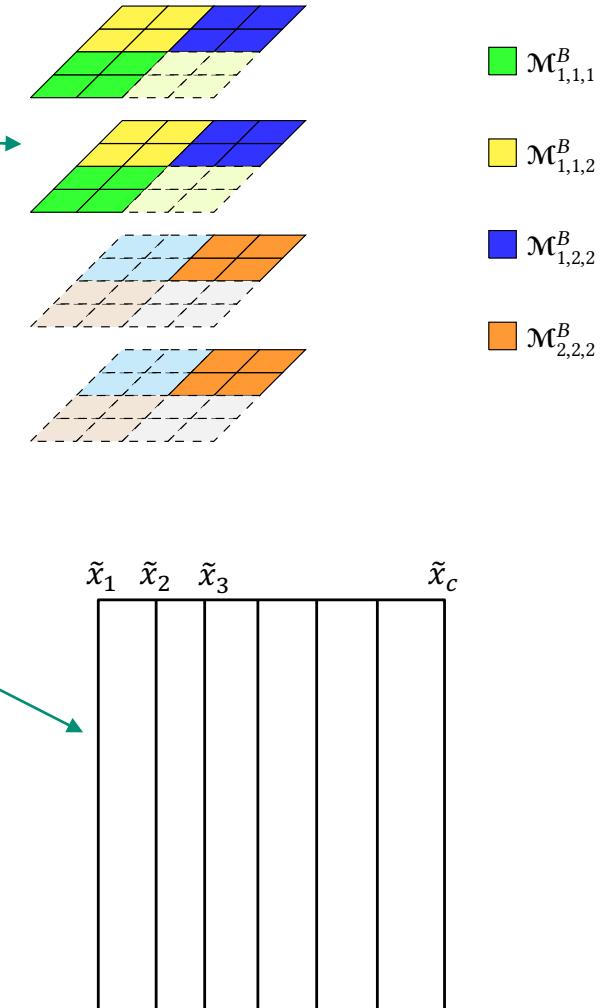
↓
gemm

- Less expensive than naïve (nested for-loops) by factor $\approx d/2$.
- Cache complexity: Matrix Khatri-Rao products are very cache-friendly, leading to fewer cache misses:
 - We recommend X to be row-major order. Matrix transpose (if need be) is $\sim \mathcal{O}(\frac{rc}{L})$ cache misses.
 - Refactoring incurs fewer cache misses by at least $\sim \mathcal{O}(s^{d/2})$ (various scenarios detailed in paper).

1. Higher-order joint moments and cumulants.
2. Computational aspects and scientific data.
3. Our algorithmic contributions.
4. HPC implementations:
5. Results.

Hierarchical parallelism

- Each subblock of \mathcal{M}_d can be computed independently:
 - For distributed-memory this could be along nodes/processes/ranks.
 - For shared-memory this can be along thread parallel units (e.g. GPU warps).
- Traversal along row-dimension of X can be parallel-reduced:
 - For distributed-memory this is aligned with domain decomposition.
 - For shared-memory this can be tiling (to reduce memory requirements).
- The matrix Khatri-Rao product (due to refactoring) exposes another level of parallelism.



Performance portable implementation with Kokkos

- Kokkos – a C++library for performance portable implementations.
- Detailed semantics to express data and compute parallelism. Hardware details of memory layout and parallelism units are abstracted out.
- We provide Kokkos implementations with three levels of parallelism:
 - “Thread Team” parallelism (e.g. GPU warp)
 - Tile parallelism (row dimension of X)
 - Thread-level parallelism

Algorithm 3 Parallel Algorithm for computing the 4th moment tensor

```

1: function  $\mathcal{M}^{(4)} = 4\text{THMOMENTTENSOR}(X, n, t, s)$ 
2:    $\triangleright s = \text{block size}, t = \text{tile size}, n = \# \text{ of teams}, X \in \mathbb{R}^{r \times c}$ 
3:    $\bar{r} = r/t$   $\triangleright \# \text{ of row tiles}$ 
4:    $nbm = \text{ceil}(c/s)$   $\triangleright \# \text{ of blocks on each mode}$ 
5:    $nb = \binom{nbm+3}{4}$   $\triangleright \text{total } \# \text{ of unique blocks in } \mathcal{M}^{(4)}$ 
6:    $\bar{nb} = nb/n$   $\triangleright \# \text{ of blocks each team computes}$ 
7:   teams_parallel_for( $i = 1, \dots, n$ )
8:      $[b_s = (i-1)nb + 1, b_e = i(\bar{nb})]$   $\triangleright \text{blocks of this team}$ 
9:     for  $j = b_s, \dots, b_e$  do
10:       $\mathbb{T}(j; nbm) \mapsto (i_1, i_2, i_3, i_4)$   $\triangleright \text{multi-index this block}$ 
11:       $X_{i_l} = X_{:, (i_l-1)s+1:i_ls}, i_l = (i_1, \dots, i_4)$   $\triangleright \text{column slices}$ 
12:      for  $k = 1, \dots, \bar{r}$  do
13:         $X_{k, i_l} = X_{(k-1)t+1:kt, i_l}$   $\triangleright k^{th} \text{ row tile}$ 
14:         $Y = \text{KHATRIRAOPRODUCT}(X_{k, i_2}^T, X_{k, i_3}^T)$ 
15:         $Z = \text{KHATRIRAOPRODUCT}(X_{k, i_4}^T, X_{k, i_3}^T)$ 
16:         $\mathcal{M}_{(i_1, i_2, i_3, i_4)}^B + = \frac{1}{r} YZ^T$ 

```

Algorithm 2 Parallel Algorithm for the Khatri-Rao Product

```

1: function  $C = \text{KHATRIRAOPRODUCT}(A, B)$ 
2:    $\triangleright A \in \mathbb{R}^{a \times c}, B \in \mathbb{R}^{b \times c}$ 
3:   threads_parallel_for( $i = 1, \dots, ab$ )
4:     vector_parallel_for( $j = 1, \dots, c$ )
5:        $(\alpha, \beta) = \mathbb{T}(i; a, b)$ 
6:        $R_{i,j} = X_{\alpha, j} X_{\beta, j}$ 

```

1. Higher-order joint moments and cumulants.
2. Computational aspects and scientific data.
3. Our algorithmic contributions.
4. HPC implementations.
5. Results.

Serial performance

- All experiments for 4th-order moment tensor, \mathcal{M}_4 .
- Serial Julia implementation compared against reference implementation (Domino *et al.*, 2018), AMD EPYC 7302.
- Parameters: r – rows of X, c – cols of X, s – size of each subblock

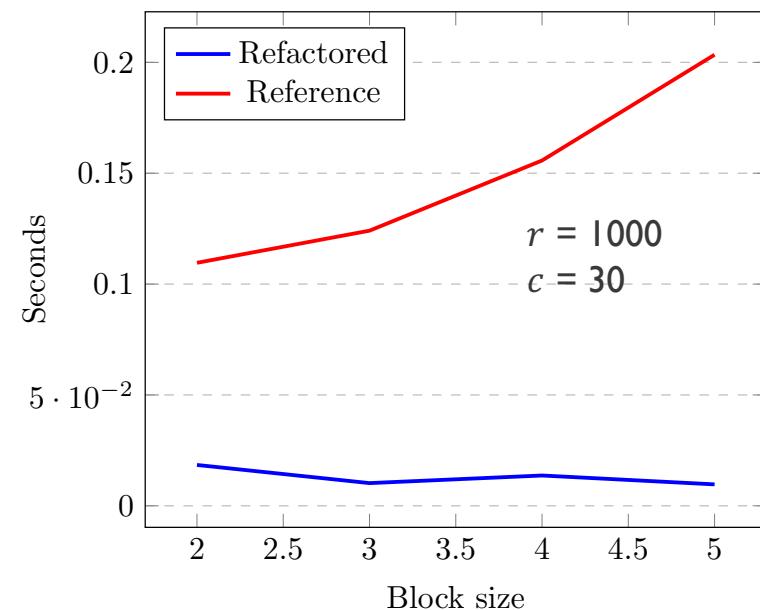


Fig. Trend with varying block size

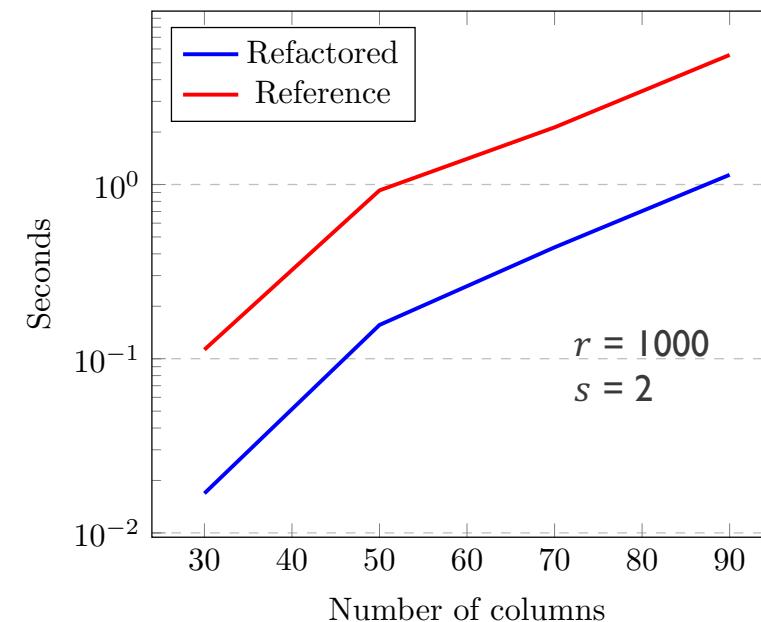


Fig. Trend with varying #columns

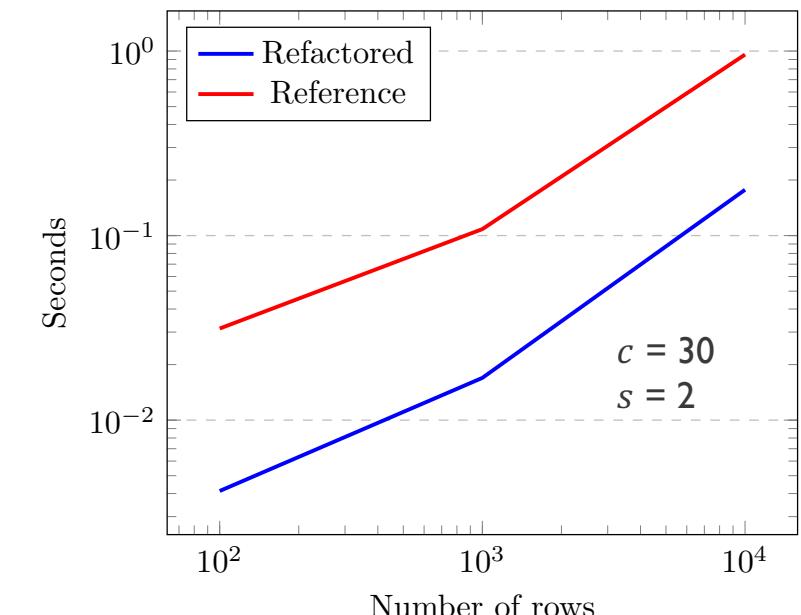


Fig. Trend with varying #rows

Parallel performance

- All experiments for 4th-order moment tensor, \mathcal{M}_4 .
- Kokkos implementation compared against reference implementation (Domino *et al.*, 2018), NVIDIA Tesla V100.
- Parameters: r – rows of X, c – cols of X, s – size of each subblock

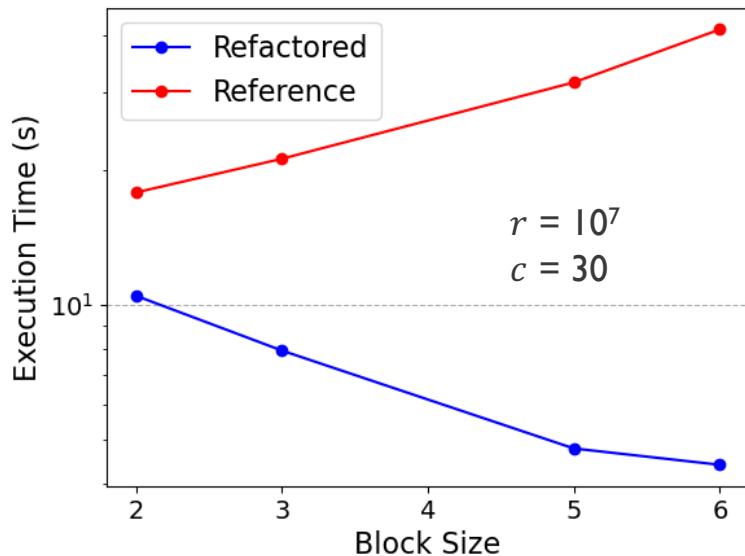


Fig. Trend with varying block size

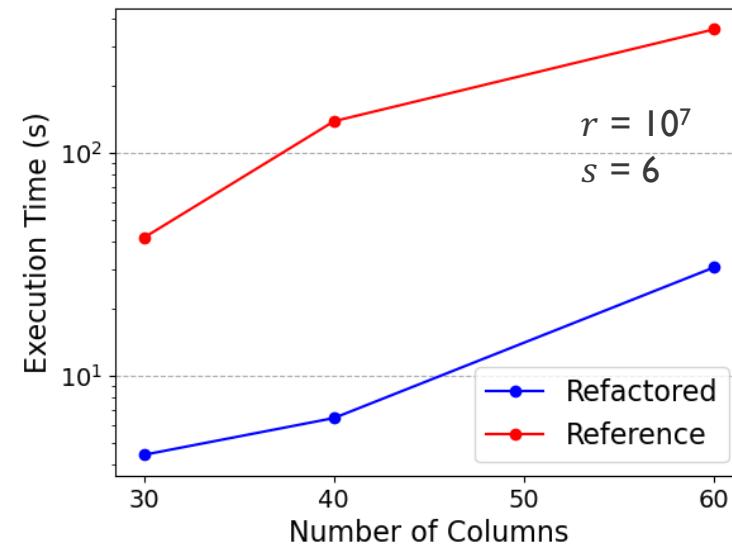


Fig. Trend with varying #columns

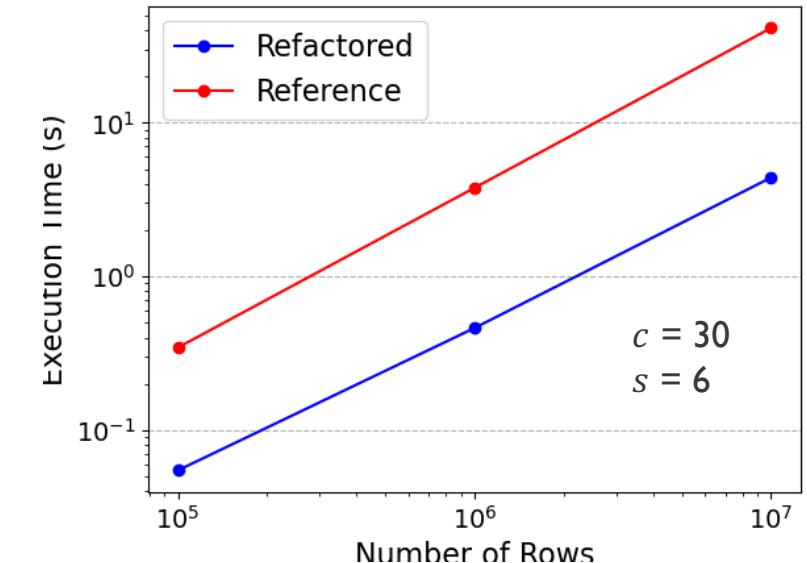


Fig. Trend with varying #rows

Cache performance

- All experiments for 4th-order moment tensor, \mathcal{M}_4 .
- Kokkos implementation compared against reference implementation (Domino *et al.*, 2018), NVIDIA Tesla V100.
- Flops and MemOps (L1-cache) measured with nvprof.

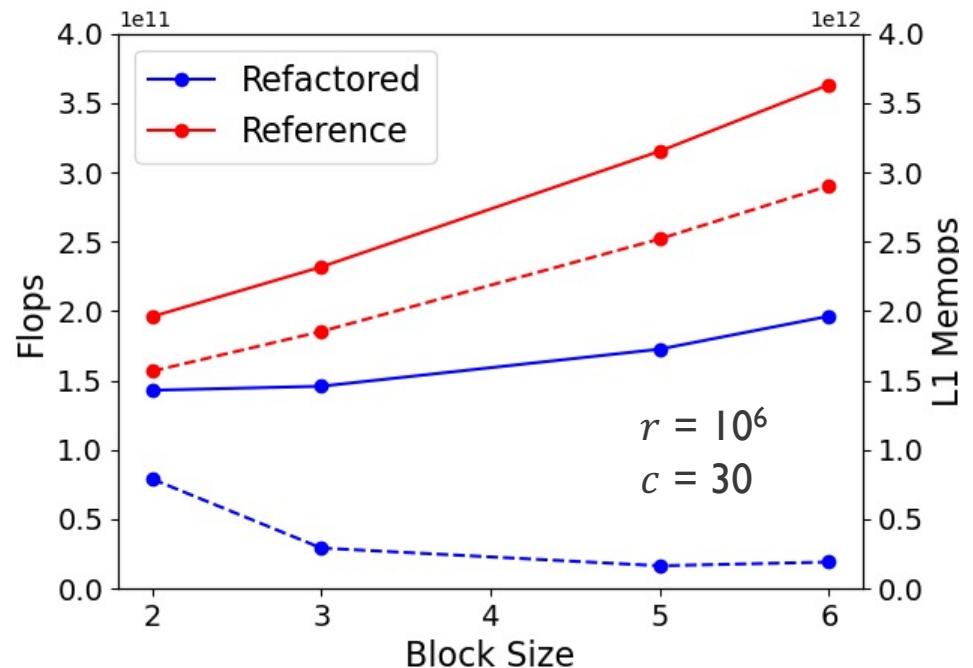


Fig. Trend with varying block size

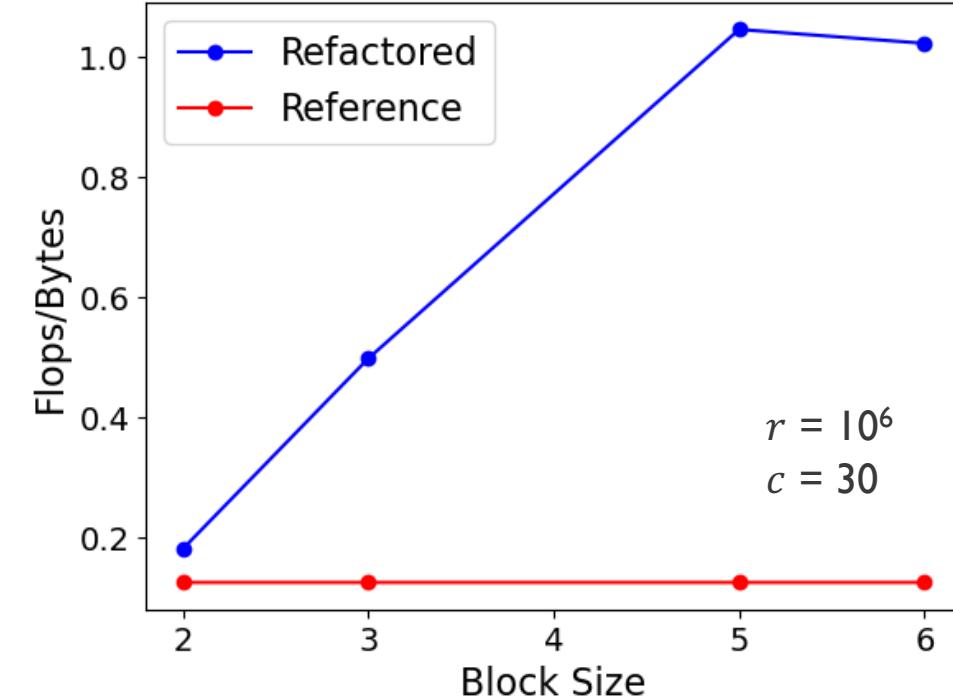


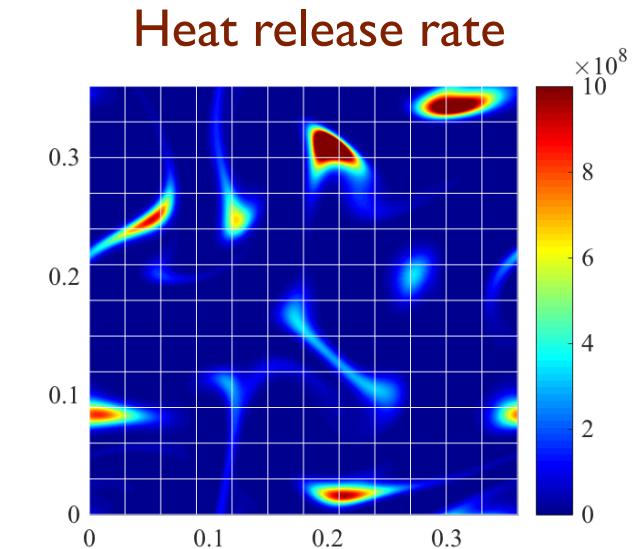
Fig. Trend with varying block size

Thank You

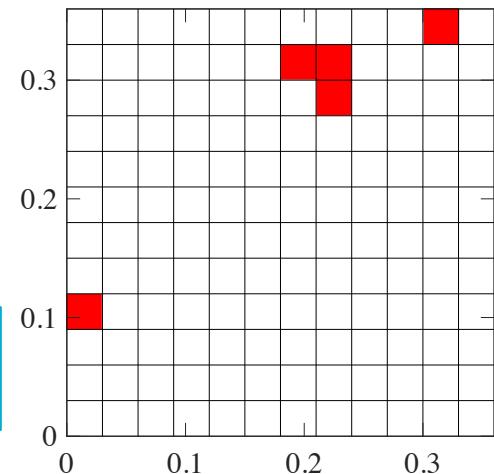
Backup

Formalizing Distributed Rare Event Detection

- Compute Principal Kurtosis Vectors on each data partition (e.g. processor).
- Compare the vectors amongst partitions in space and/or time:
 - Proposed Feature moment metrics (fraction of the kurtosis attributable to each variable) to quantify orientation of Kurtosis vectors.
 - FMMs sum to unity, akin to discrete distribution.
 - Divergence metric (Hellinger distance) to compare across partitions.
- Most computation (cokurtosis tensor and principal vectors) is local.
- Communication only of a small vector of numbers (FMMs).



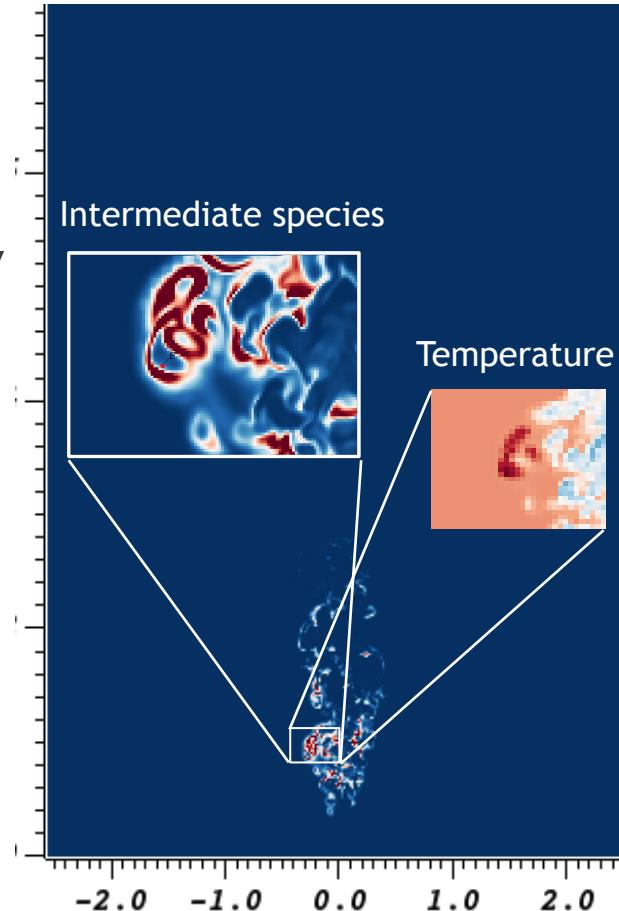
Anomalous partitions



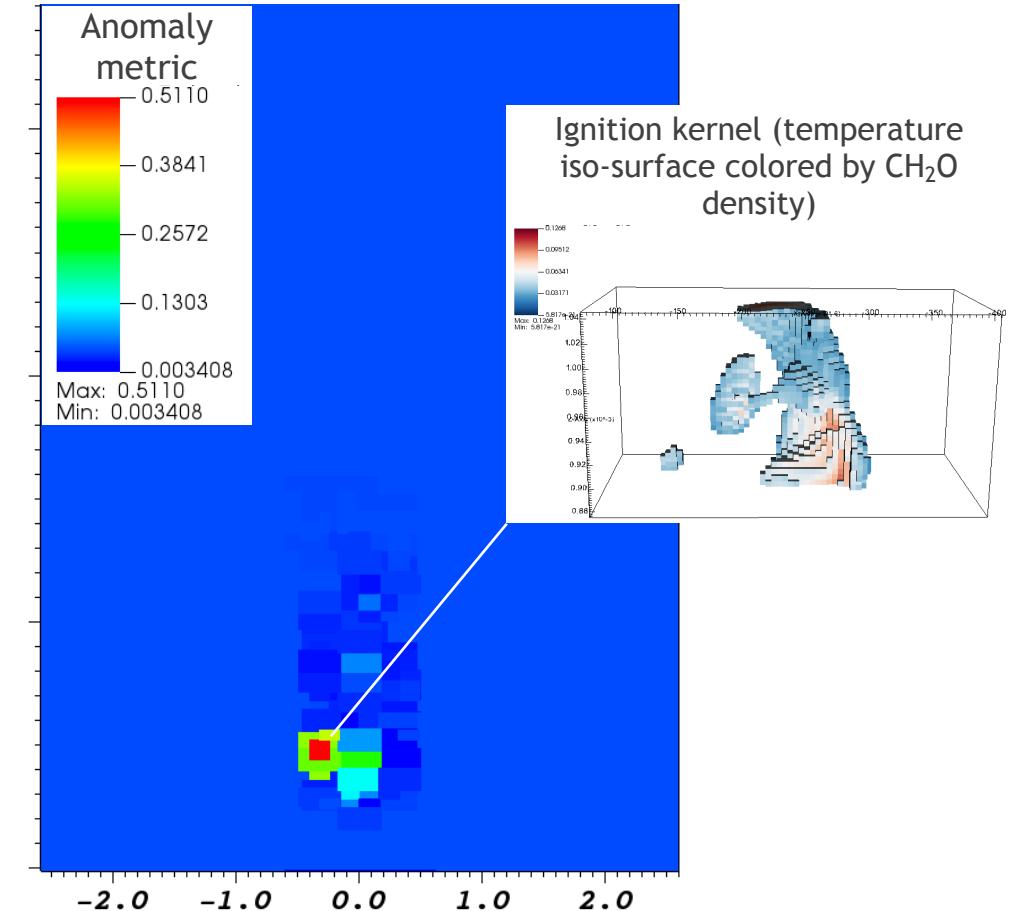
["Anomaly detection in scientific data using joint statistical moments."](#) K. Aditya, H. Kolla, W.P. Kegelmeyer, T.M. Shead, J. Ling, W.L. Davis IV, Journal of Computational Physics, 2019.

Pele: PeleLM, adaptive-mesh low Mach number hydrodynamics code for reacting flows

Identification currently based on ad-hoc thresholds



Validation: co-kurtosis tensor-based unsupervised anomaly detection



Contributors: Martin Rieth, Jackie Chen, Marco Arienti, Janine Bennett (Sandia Natl. Labs), Matt Larsen (formerly at LLNL)