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5 ‘ Higher-order joint statistical moments

Scientific analyses rarely look at marginal/joint moments higher than 2" (variance/covariance).

* Financial modelling has used coskewness and cokurtosis.

For multi-variate non-Gaussian statistics important information is present in higher joint moments.

* Moments: ﬁli’j = E(iixj)’ﬁii,j,k = E(fifjﬁk)’mi,j,k,l = [E(flfjfkfl) where i,j, k,l € {1 cen e C}

* Cumulants: q;; =M;j, Qijr = Mijrs  Qijkl = Mijkr — M Mg — MMy — MM

If the random variables are joint-Gaussian, all cumulants of order > 2 are zero.

A d'"-order moment/cumulant is a ‘supersymmetric’ tensor of order- d:

* e.g.for a 3r-order moment, ; ;.= M,y ;= M;; = M ) ;= My ; ;= My ; for any i, j, k.
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Definition: For a vector of random variables, [X;, X1, ... ... ,X. |, centered around mean i.e. E(¥;) = O:



¢ | Applications of higher-order joint moments

* Hitherto mostly used in financial modelling; portfolio risk assessment and asset pricing.

* Independent Component Analysis (ICA) algorithms based on eigen decomposition of 4t"-order
cumulants (Cardoso 1989, Comon & Cardoso 1990).

* |CA has been used for assessment of climate models (Fodor & Kamath 2003), source identification in

stream water temperatures (Middleton et al,, 2015).

* Hyperspectral imaging: band selection and small target detection (Geng et al,, 2015, Gtomb et al., 2018), ICA-
based dimensionality reduction (Wang & Chang 2006).

* Medical electrodiagnostics: artifact detection in EEG (Delorme et al,, 2007), feature identification in EMG
(Domino et al, 2019), feature extraction and classification in ECG (Yu & Chou 2008, Kutlu & Kuntalp 2012).

* Anomaly detection in multi-variate data (Pena & Prieto 2001, Konduri et al., 2019).
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7 | Information in higher-order statistical moments

For non-Gaussian multi-variate statistical processes higher-order joint moments are informative
(co-skewness is 3rd-order tensor, co-kurtosis is 4t"-order tensor)

Vi
Red: Eigenvectors of Covariance (Principal Component Analysis). Denote directions of maximal variance
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s | Information in higher-order statistical moments

For non-Gaussian multi-variate statistical processes higher-order joint moments are informative
(co-skewness is 3rd-order tensor, co-kurtosis is 4t"-order tensor)

V] Vl
Red: Eigenvectors of Covariance (Principal Component Analysis). Denote directions of maximal variance

Blue: ‘Principal Kurtosis Vectors’. Obtained through HOSVD of co-kurtosis tensor.
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9 I Information in higher-order statistical moments

PCA vectors not sensitive to outliers, Principal Kurtosis Vectors are.

Red: Eigenvectors of Covariance (Principal Component Analysis). Denote directions of maximal variance

Blue: ‘Principal Kurtosis Vectors’. Obtained through HOSVD of co-kurtosis tensor.
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11 I Nalve computation of moment tensor

fl fz f3 Xc
for i; = 1:c
for i, = 1:c
~ Uttt 1rt 1 1 e
XER for ig = 1:c
for row = 1l:r
Mi1,i2,..i4 += X(row,i;)*....*X(row,iy)

* Input matrix, r — grid points, time steps * Naive computation of d*"-order moment .

* Typically r > ¢  Computational complexity ~O(rdc?).

PASC, 27™ JUNE 2022



12 | Leveraging symmetry

* Symmetry: Full moment tensor has ¢ elements, but many are duplicated

« Number of unique elements: (C +‘;_ 1) |

mae, |
E
* Blocked Compact Symmetric Storage (BCSS) (Schatz et al, 2014). v,
. . ((c/s)+d -1 T
Number of blocks to compute: ( i y M3,
e = /= _/./____/_./____ - D Mg’z’z
 Number of elements per block: s? i anran
d_l /__./__./__./_/_.//
- Number of elements to be computed: s¢((¢/9*
umber of element P > d Fig. A symmetric 4x4x4 tensor divided into 8 blocks

. ) of 2x2x2 as per the BCSS format
* Potential savings ~O(d!)
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13 | Leveraging symmetry

only unique subset of blocks.

Focus was on computation of cumulant tensors:

Domino et al., (2018) leverage symmetry and BCSS to compute

* Presented a formula for C; = f (Mg, C5, ..., Cua_>)

* Involves sum of outer-products of C», ..., C4_>

Parallelize along the row dimension

Compute moment tensor (M) subblocks using nested loops

/
o -
_S °
|—l- °
Q— [ ]
n o,
n

* Speedup of M, ~ 24 (relative to naive full tensor computation)

* Speedup of C, ~ 100
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O vt

D MJIB,I,Z

e 4 mo

B '//_'_'/_J_'_' . O M’ZZ,Z

for i; = 1:s
for i, = 1:s
1: ]
for row = 1:r

Mi1,i2,..id += X(row,il)*....*x(row,id)I
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15 | Refactoring of moment tensor block computation

* We propose refactoring using following ingredients:

od
*Xj = XjoXjorX (d-way outer product)

N— —
g

L : d-
» Matricisation of a d-way symmetric tensor: Mat,, : R(€*¢*¢) — REP*c™P

* Matrix Khatri-Rao product (© - Kronecker product of individual columns of two matrices

* Motivation: M; can be expressed as sum of outer products of row vectors of X (Sherman & Kolda 2020):

1 r
c My = ;Zx;?d ,  Where x; = X[ j,:],
j=1

» Can be easily pictured for covariance: M, = 1/, (XTX)

p d—p !
1
* Final It f & details | : S T T
Inal result (proo etails in paper):  Mat, (M) . (@X )(@X )
* Recommendation: p = d /2
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16 | Refactoring of moment tensor block computation

p

O

: . : 1
* Refactored expression applies identically to sub moment tensor sub blocks: Mat, (M) = -
r

5

* Input would be column slices of X instead of the entire matrix

. ) Khatri-Rao products gemm # of blocks
* Computational complexity: ] | I

c/s)+d-—1
(2rs9/2 4+ (2r —1)s9 ) ({e/o)Fd=1)

* Less expensive than naive (nested for-loops) by factor =~ d /2.

* Cache complexity: Matrix Khatri-Rao products are very cache-friendly, leading to fewer cache misses:

. . . . rc .
* We recommend X to be row-major order. Matrix transpose (if need be) is NO(T) cache misses.

* Refactoring incurs fewer cache misses by at least ~O(s /2) (various scenarios detailed in paper).
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18 | Hierarchical parallelism

* Each subblock of M; can be computed independently:
* For distributed-memory this could be along nodes/processes/ranks.
* For shared-memory this can be along thread parallel units (e.g. GPU warps).

* Traversal along row-dimension of X can be parallel-reduced:

* For distributed-memory this is aligned with domain decomposition:

* For shared-memory this can be tiling (to reduce memory requirements).

* The matrix Khatri-Rao product (due to refactoring) exposes another level of

parallelism.
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19 | Performance portable implementation with Kokkos

Algorithm 3 Parallel Algorithm for computing the 4th moment

tensor

* Kokkos —a C++library for performance portable implementations.

* Detailed semantics to express data and compute parallelism.
Hardware details of memory layout and parallelism units are

abstracted out.

1:
2
3
4
5:
6
7
8
9

10:

* We provide Kokkos implementations with three levels

parallelism:

* “Thread Team” parallelism (e.g. GPU warp)

function MY = 4THMOMENTTENSOR(X, 1, £, )

> s = block size, t = tile size, n = # of teams, X € R"¢

r=r/t > # of row tiles
nbm = ceil(c/s) > # of blocks on each mode
nb = ("bT+3) > total # of unique blocks in M%)
nb =nb/n > # of blocks each team computes
teams_parallel for(i=1,..., n)

[bs = (i—1)nb+1,be = i(nb) ] »blocks of this team
for j=bs,..., b. do
T(j;nbm) +— (i1, iz, i3,i4) > multi-index this block
Xi; = X, (ij=1)s+1:izs0 i1 = (i1, . . ig) > column slices
fork=1,..., 7 do
Xki; = X(k=1)t+1:kt. i) > k'™ row tile
Y= KHATRIRAOPRODUCT(XIY;I,Z, Xlz,z*)

13

Z = KHATRIRAOPRODUCT(X; XTI )
slg k,i3

B _ 1y T
M rigisin) T= 7 YZ

* Tile parallelism (row dimension of X)

Algorithm 2 Parallel Algorithm for the Khatri-Rao Product

* Thread-level parallelism  »

1:
2
3
4:
5
6

function C = KHATRIRAOPRODUCT(A, B)

> A€ RaXC’ Be RbXC
threads_parallel_for(i=1,..., ab)
vector_parallel_for(j =1,..., c)
(o, f) =T(i;a,b)
Rij = Xa,jXp,
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21

Serial performance

* All experiments for 4®-order moment tensor, M.

* Serial Julia implementation compared against reference implementation (Domino et al,2018), AMD EPYC 7302.
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s — size of each subblock
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Execution Time (s)

Parallel performance

* All experiments for 4®-order moment tensor, M.

* Kokkos implementation compared against reference implementation (Domino et al,2018), NVIDIA TeslaV100.

lOlt
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23 I Cache performance

* All experiments for 4®-order moment tensor, M.
* Kokkos implementation compared against reference implementation (Domino et al,2018), NVIDIA TeslaV100.

* Flops and MemOps (L1-cache) measured with nvprof.
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Thank You
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Backup
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Formalizing Distributed Rare Event Detection

* Compute Principal Kurtosis Vectors on each data partition (e.g.
processor).

* Compare the vectors amongst partitions in space and/or time:

* Proposed Feature moment metrics (fraction of the kurtosis attributable to

each variable) to quantify orientation of Kurtosis vectors.
* FMMs sum to unity, akin to discrete distribution.
* Divergence metric (Hellinger distance) to compare across partitions.
* Most computation (cokurtosis tensor and principal vectors) is local.

* Communication only of a small vector of numbers (FMMs).

y ”” K. Aditya, H. Kolla, W.P. Kegelmeyer,

T.M. Shead, J. Ling, W.L. Davis IV, Journal of Computational Physics, 2019.
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27 | Ignition detection in exascale combustion code E(C'P &5

Pele: PeleLM, adaptive-mesh low
Mach number hydrodynamics
code for reacting flows

Contributors: Martin Rieth, Jackie Chen, Marco Arienti, Janine Bennett (Sandia Natl.
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|dentification currently based
on ad-hoc thresholds

Intermediate species

Temperature

Validation: co-kurtosis tensor-based
unsupervised anomaly detection

Anomaly
metric

] 05110
al |

—0.3841

Ignition kernel (temperature
iso-surface colored by CH,0
density)

] -—0.2572

—0.1303

] 0.003408
] Max: 05110
Min: 0.003408 o

Labs), Matt Larsen (formerly at LLNL)



