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5 Higher-order joint statistical moments

• Scientific analyses rarely look at marginal/joint moments higher than 2nd (variance/covariance).

• Financial modelling has used coskewness and cokurtosis.

• For multi-variate non-Gaussian statistics important information is present in higher joint moments.

• Definition: For a vector of random variables, !𝑥!, !𝑥!, …… , !𝑥" , centered around mean i.e. 𝔼 !𝑥! = 0:

• Moments: (𝑚#,% = 𝔼 !𝑥# !𝑥% , (𝑚#,%,& = 𝔼 !𝑥# !𝑥% !𝑥& , (𝑚#,%,&,' = 𝔼 !𝑥# !𝑥% !𝑥& !𝑥' where 𝑖, 𝑗, 𝑘, 𝑙 ∈ 1… . . 𝑐

• Cumulants: 𝑞#,% = (𝑚#,%,     𝑞#,%,& = (𝑚#,%,&,     𝑞#,%,&,' = (𝑚#,%,&,' − (𝑚#,% (𝑚&,' − (𝑚#,& (𝑚%,' − (𝑚#,' (𝑚%,&,

• If the random variables are joint-Gaussian, all cumulants of order > 2 are zero.

• A 𝑑()-order moment/cumulant is a ‘supersymmetric’ tensor of order- 𝑑:

• e.g. for a 3rd-order moment,  !𝑚!,#,$= !𝑚!,$,#= !𝑚#,!,$= !𝑚#,$,!= !𝑚$,!,#= !𝑚$,#,! for any 𝑖, 𝑗, 𝑘.
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6 Applications of higher-order joint moments

• Hitherto mostly used in financial modelling; portfolio risk assessment and asset pricing. 

• Independent Component Analysis (ICA) algorithms based on eigen decomposition of 4th-order 
cumulants (Cardoso 1989, Comon & Cardoso 1990).

• ICA has been used for assessment of climate models (Fodor & Kamath 2003), source identification in 
stream water temperatures (Middleton et al., 2015).

• Hyperspectral imaging: band selection and small target detection (Geng et al., 2015, Głomb et al., 2018), ICA-
based dimensionality reduction (Wang & Chang 2006).

• Medical electrodiagnostics: artifact detection in EEG (Delorme et al., 2007), feature identification in EMG 
(Domino et al., 2019), feature extraction and classification in ECG (Yu & Chou 2008, Kutlu & Kuntalp 2012).

• Anomaly detection in multi-variate data (Peña & Prieto 2001, Konduri et al., 2019).
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For non-Gaussian multi-variate statistical processes higher-order joint moments are informative
(co-skewness is 3rd-order tensor, co-kurtosis is 4th-order tensor)

Red: Eigenvectors of Covariance (Principal Component Analysis). Denote directions of maximal variance

Information in higher-order statistical moments
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PCA vectors not sensitive to outliers, Principal Kurtosis Vectors are.

Red: Eigenvectors of Covariance (Principal Component Analysis). Denote directions of maximal variance

Blue: ‘Principal Kurtosis Vectors’. Obtained through HOSVD of co-kurtosis tensor.
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11 Naïve computation of moment tensor
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'𝑥% '𝑥& '𝑥''𝑥(

Χ ∈ ℝ*×"

• Input matrix, 𝑟 – grid points, time steps

• Typically 𝑟 ≫ 𝑐

for i1 = 1:c
for i2 = 1:c
...........
for id = 1:c
for row = 1:r
mi1,i2,..id += X(row,i1)*....*X(row,id) 

• Naïve computation of 𝑑th-order moment .

• Computational complexity ~𝒪(𝑟𝑑𝑐,).



• Symmetry: Full moment tensor has 𝑐, elements, but many are duplicated

• Number of unique elements:

• Blocked Compact Symmetric Storage (BCSS) (Schatz et al., 2014).

• Number of blocks to compute: 

• Number of elements per block:

• Number of elements to be computed:

• Potential savings ~𝒪(𝑑!)

12 Leveraging symmetry

PASC, 27TH JUNE 2022
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2.4 Symmetric tensor
A symmetric tensor is one whose elements have the same value for
all permutations of their indices 1. For example, an order-3 tensor
X(3) is symmetric if and only if

G8, 9,: = G8,:, 9 = G:,8, 9 = G:, 9,8 = G 9,:,8 = G 9,8,:

for any 8 , 9 , and : . All symmetric tensors are hypercubical, which
means each of its dimensions is of the same size. The following are
two obvious properties of a order-3 symmetric tensor of size 2 (i.e.
the size of each dimension is 2) :

• The total number of elements is 23 .
• The number of unique elements is at most

�2+3�1
3

�
.

From these two properties we can see that the storage and compu-
tation cost of symmetric tensor can be reduced by O(3!) if we can
exploit its symmetric nature.

2.5 Storing symmetric tensor
One way to store a symmetric tensor is proposed in [18] as Blocked
Compact Symmetric Storage (BCSS). We adopt this approach in
our implementation. The general idea of BCSS is to partition the
3-dimensional tensor into smaller 3-dimensional blocks and only
store those blocks with unique values. This is simply an extension,
to higher dimensions, of the idea of using upper/lower triangular
forms to fully represent symmetric matrices while saving on storage
and computation costs. Figure 1 shows an example where a 4⇥4⇥4
tensor is partitioned into eight 2⇥2⇥2 blocks, each with a di�erent
color. (In practice, these block don’t necessarily have the same
dimension, but they are guaranteed to be cubical). Four of those
blocks (e.g. those in the legend) have unique values and need to
be stored (the other blocks are symmetric counterparts). To index
each block, we treat each block as a single element in a tensor of
blocks. For example, the 1st block, colored green, will be denoted as
M⌫

1,1,1, to avoid being confused with the 1st scalar element of the
whole tensor. We choose to store only those blocks whose indices
are in strictly increasing order because this makes it easy to list out
those unique blocks.

This data structure is not optimal in terms of memory e�ciency
because the blocks on the hyper diagonal of a symmetric tensor
are symmetric and thus contain redundancy. More speci�cally, for
a 3-dimensional symmetric tensor X of size 2 , let the block size
be B (in Figure 1 3 = 3, 2 = 4, B = 2). There are (2/B) blocks on
each mode, resulting in

� (2/B)+3�1
3

�
blocks where each block has B3

entries. So the total storage needed with this blocked approach will
be

B3
✓
(2/B) + 3 � 1

3

◆

Whereas the storage needed for only the unique values is✓
2 + 3 � 1

3

◆

This sacri�ce of memory is justi�ed since otherwise we have to
use alternative ways of ordering the unique values of the tensor in

1In literature such symmetry over all modes is sometimes referred to as ‘super-
symmetry’, to distinguish from partial symmetry over a subset of indices. For brevity
we will refer to supersymmetry simply as symmetry.

M⌫
2,2,2

M⌫
1,2,2

M⌫
1,1,2

M⌫
1,1,1

Figure 1: How a 4 ⇥ 4 ⇥ 4 symmetric tensor is divided into 8
2 ⇥ 2 ⇥ 2 blocks, each in a di�erent color.

memory, which causes the complexity of indexing them to increase
quickly [10].

2.6 Joint moment tensor
For input data X 2 RA⇥2 , its 3th joint moment is a 3-dimensional
symmetric tensor of total size 23 . The element-wise expression for
the 3th moment tensor M of X is shown below:

<81,82,...,83 =
1
A

A’
8 9=1

3÷
:=1

G8 9 ,8: (5)

Computing this moment tensor in this naive way is very expensive.
However, it’s easy to see that moment tensor of any matrix is
symmetric. It is natural to think about exploiting the symmetry of
the moment tensor by employing the BCSS data structure and only
computing the elements in its unique blocks.

A key expression involves joint moment tensors written in terms
of 3-way outer products of vectors [19]. If x 9 ⌘ X( 9,:) is the 9 th row
vector, then

M =
1
A

A’
9=1

x�
3

9 . (6)

We will exploit this expression to re-arrange the moment tensor
computation in terms of matrix operations which is more e�cient.

2.7 Vectorization of a tensor
It is sometimes useful to convert the tuple index of a tensor lin-
early into a single scalar index. There are multiple ways to do this
depending on how one orders the entries in the tensor. We adopt
the “column major ordering” convention and de�ne a function L to
compute such a conversion:

De�nition 2.1. Given two tuples (81, . . . , 83 ) and (�1, . . . , �3 ), where
8: 2 {1, . . . , �: }, the linear index U corresponding to (81, . . . , 83 ) is

U = L(81, . . . , 83 ; �1, . . . , �3 ) = 1 +
3’

:=1
(8: � 1)

:�1÷
;=1

�;

It’s easy to verify that the L function is injective. In fact, we can
de�ne it’s inverse function as the following:
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two obvious properties of a order-3 symmetric tensor of size 2 (i.e.
the size of each dimension is 2) :

• The total number of elements is 23 .
• The number of unique elements is at most

�2+3�1
3

�
.

From these two properties we can see that the storage and compu-
tation cost of symmetric tensor can be reduced by O(3!) if we can
exploit its symmetric nature.

2.5 Storing symmetric tensor
One way to store a symmetric tensor is proposed in [18] as Blocked
Compact Symmetric Storage (BCSS). We adopt this approach in
our implementation. The general idea of BCSS is to partition the
3-dimensional tensor into smaller 3-dimensional blocks and only
store those blocks with unique values. This is simply an extension,
to higher dimensions, of the idea of using upper/lower triangular
forms to fully represent symmetric matrices while saving on storage
and computation costs. Figure 1 shows an example where a 4⇥4⇥4
tensor is partitioned into eight 2⇥2⇥2 blocks, each with a di�erent
color. (In practice, these block don’t necessarily have the same
dimension, but they are guaranteed to be cubical). Four of those
blocks (e.g. those in the legend) have unique values and need to
be stored (the other blocks are symmetric counterparts). To index
each block, we treat each block as a single element in a tensor of
blocks. For example, the 1st block, colored green, will be denoted as
M⌫

1,1,1, to avoid being confused with the 1st scalar element of the
whole tensor. We choose to store only those blocks whose indices
are in strictly increasing order because this makes it easy to list out
those unique blocks.

This data structure is not optimal in terms of memory e�ciency
because the blocks on the hyper diagonal of a symmetric tensor
are symmetric and thus contain redundancy. More speci�cally, for
a 3-dimensional symmetric tensor X of size 2 , let the block size
be B (in Figure 1 3 = 3, 2 = 4, B = 2). There are (2/B) blocks on
each mode, resulting in

� (2/B)+3�1
3

�
blocks where each block has B3

entries. So the total storage needed with this blocked approach will
be

B3
✓
(2/B) + 3 � 1

3

◆

Whereas the storage needed for only the unique values is✓
2 + 3 � 1

3

◆

This sacri�ce of memory is justi�ed since otherwise we have to
use alternative ways of ordering the unique values of the tensor in

1In literature such symmetry over all modes is sometimes referred to as ‘super-
symmetry’, to distinguish from partial symmetry over a subset of indices. For brevity
we will refer to supersymmetry simply as symmetry.

M⌫
2,2,2

M⌫
1,2,2

M⌫
1,1,2
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1,1,1

Figure 1: How a 4 ⇥ 4 ⇥ 4 symmetric tensor is divided into 8
2 ⇥ 2 ⇥ 2 blocks, each in a di�erent color.

memory, which causes the complexity of indexing them to increase
quickly [10].

2.6 Joint moment tensor
For input data X 2 RA⇥2 , its 3th joint moment is a 3-dimensional
symmetric tensor of total size 23 . The element-wise expression for
the 3th moment tensor M of X is shown below:

<81,82,...,83 =
1
A

A’
8 9=1

3÷
:=1

G8 9 ,8: (5)

Computing this moment tensor in this naive way is very expensive.
However, it’s easy to see that moment tensor of any matrix is
symmetric. It is natural to think about exploiting the symmetry of
the moment tensor by employing the BCSS data structure and only
computing the elements in its unique blocks.

A key expression involves joint moment tensors written in terms
of 3-way outer products of vectors [19]. If x 9 ⌘ X( 9,:) is the 9 th row
vector, then

M =
1
A

A’
9=1

x�
3

9 . (6)

We will exploit this expression to re-arrange the moment tensor
computation in terms of matrix operations which is more e�cient.

2.7 Vectorization of a tensor
It is sometimes useful to convert the tuple index of a tensor lin-
early into a single scalar index. There are multiple ways to do this
depending on how one orders the entries in the tensor. We adopt
the “column major ordering” convention and de�ne a function L to
compute such a conversion:

De�nition 2.1. Given two tuples (81, . . . , 83 ) and (�1, . . . , �3 ), where
8: 2 {1, . . . , �: }, the linear index U corresponding to (81, . . . , 83 ) is

U = L(81, . . . , 83 ; �1, . . . , �3 ) = 1 +
3’

:=1
(8: � 1)

:�1÷
;=1

�;

It’s easy to verify that the L function is injective. In fact, we can
de�ne it’s inverse function as the following:



• Domino et al., (2018) leverage symmetry and BCSS to compute 
only unique subset of blocks.

• Focus was on computation of cumulant tensors:

• Presented a formula for 𝒞, = 𝑓(ℳ,, 𝒞-, … , 𝒞,.-)

• Involves sum of outer-products of 𝒞-, … , 𝒞,.-

• Compute moment tensor (ℳ,) subblocks using nested loops

• Parallelize along the row dimension

• Speedup of ℳ/ ~ 24 (relative to naïve full tensor computation)

• Speedup of 𝒞/ ~ 100
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2.4 Symmetric tensor
A symmetric tensor is one whose elements have the same value for
all permutations of their indices 1. For example, an order-3 tensor
X(3) is symmetric if and only if

G8, 9,: = G8,:, 9 = G:,8, 9 = G:, 9,8 = G 9,:,8 = G 9,8,:

for any 8 , 9 , and : . All symmetric tensors are hypercubical, which
means each of its dimensions is of the same size. The following are
two obvious properties of a order-3 symmetric tensor of size 2 (i.e.
the size of each dimension is 2) :

• The total number of elements is 23 .
• The number of unique elements is at most

�2+3�1
3

�
.

From these two properties we can see that the storage and compu-
tation cost of symmetric tensor can be reduced by O(3!) if we can
exploit its symmetric nature.

2.5 Storing symmetric tensor
One way to store a symmetric tensor is proposed in [18] as Blocked
Compact Symmetric Storage (BCSS). We adopt this approach in
our implementation. The general idea of BCSS is to partition the
3-dimensional tensor into smaller 3-dimensional blocks and only
store those blocks with unique values. This is simply an extension,
to higher dimensions, of the idea of using upper/lower triangular
forms to fully represent symmetric matrices while saving on storage
and computation costs. Figure 1 shows an example where a 4⇥4⇥4
tensor is partitioned into eight 2⇥2⇥2 blocks, each with a di�erent
color. (In practice, these block don’t necessarily have the same
dimension, but they are guaranteed to be cubical). Four of those
blocks (e.g. those in the legend) have unique values and need to
be stored (the other blocks are symmetric counterparts). To index
each block, we treat each block as a single element in a tensor of
blocks. For example, the 1st block, colored green, will be denoted as
M⌫

1,1,1, to avoid being confused with the 1st scalar element of the
whole tensor. We choose to store only those blocks whose indices
are in strictly increasing order because this makes it easy to list out
those unique blocks.

This data structure is not optimal in terms of memory e�ciency
because the blocks on the hyper diagonal of a symmetric tensor
are symmetric and thus contain redundancy. More speci�cally, for
a 3-dimensional symmetric tensor X of size 2 , let the block size
be B (in Figure 1 3 = 3, 2 = 4, B = 2). There are (2/B) blocks on
each mode, resulting in

� (2/B)+3�1
3

�
blocks where each block has B3

entries. So the total storage needed with this blocked approach will
be

B3
✓
(2/B) + 3 � 1

3

◆

Whereas the storage needed for only the unique values is✓
2 + 3 � 1

3

◆

This sacri�ce of memory is justi�ed since otherwise we have to
use alternative ways of ordering the unique values of the tensor in

1In literature such symmetry over all modes is sometimes referred to as ‘super-
symmetry’, to distinguish from partial symmetry over a subset of indices. For brevity
we will refer to supersymmetry simply as symmetry.
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Figure 1: How a 4 ⇥ 4 ⇥ 4 symmetric tensor is divided into 8
2 ⇥ 2 ⇥ 2 blocks, each in a di�erent color.

memory, which causes the complexity of indexing them to increase
quickly [10].

2.6 Joint moment tensor
For input data X 2 RA⇥2 , its 3th joint moment is a 3-dimensional
symmetric tensor of total size 23 . The element-wise expression for
the 3th moment tensor M of X is shown below:

<81,82,...,83 =
1
A

A’
8 9=1

3÷
:=1

G8 9 ,8: (5)

Computing this moment tensor in this naive way is very expensive.
However, it’s easy to see that moment tensor of any matrix is
symmetric. It is natural to think about exploiting the symmetry of
the moment tensor by employing the BCSS data structure and only
computing the elements in its unique blocks.

A key expression involves joint moment tensors written in terms
of 3-way outer products of vectors [19]. If x 9 ⌘ X( 9,:) is the 9 th row
vector, then

M =
1
A

A’
9=1

x�
3

9 . (6)

We will exploit this expression to re-arrange the moment tensor
computation in terms of matrix operations which is more e�cient.

2.7 Vectorization of a tensor
It is sometimes useful to convert the tuple index of a tensor lin-
early into a single scalar index. There are multiple ways to do this
depending on how one orders the entries in the tensor. We adopt
the “column major ordering” convention and de�ne a function L to
compute such a conversion:

De�nition 2.1. Given two tuples (81, . . . , 83 ) and (�1, . . . , �3 ), where
8: 2 {1, . . . , �: }, the linear index U corresponding to (81, . . . , 83 ) is

U = L(81, . . . , 83 ; �1, . . . , �3 ) = 1 +
3’

:=1
(8: � 1)

:�1÷
;=1

�;

It’s easy to verify that the L function is injective. In fact, we can
de�ne it’s inverse function as the following:

for i1 = 1:s
for i2 = 1:s
...........
for id = 1:s
for row = 1:r
mi1,i2,..id += X(row,i1)*....*X(row,id) 
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• We propose refactoring using following ingredients: 

• 𝑥%∘
!
= 𝑥% ∘ 𝑥% ∘ ⋯𝑥% (d-way outer product)

• Matricisation of a d-way symmetric tensor:  𝑀𝑎𝑡1 ∶ ℝ("×"×⋯") → ℝ""×"!#"

• Matrix Khatri-Rao product ⊙ - Kronecker product of individual columns of two matrices

• Motivation:ℳ, can be expressed as sum of outer products of row vectors of X (Sherman & Kolda 2020):

• ℳ, = ,    where 𝑥% = X[ 𝑗, : ], 

• Can be easily pictured for covariance: ℳ- = ⁄! * (X5X)

• Final result (proof & details in paper):

• Recommendation: 𝑝 = 𝑑/2
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2.4 Symmetric tensor
A symmetric tensor is one whose elements have the same value for
all permutations of their indices 1. For example, an order-3 tensor
X(3) is symmetric if and only if

G8, 9,: = G8,:, 9 = G:,8, 9 = G:, 9,8 = G 9,:,8 = G 9,8,:

for any 8 , 9 , and : . All symmetric tensors are hypercubical, which
means each of its dimensions is of the same size. The following are
two obvious properties of a order-3 symmetric tensor of size 2 (i.e.
the size of each dimension is 2) :

• The total number of elements is 23 .
• The number of unique elements is at most

�2+3�1
3

�
.

From these two properties we can see that the storage and compu-
tation cost of symmetric tensor can be reduced by O(3!) if we can
exploit its symmetric nature.

2.5 Storing symmetric tensor
One way to store a symmetric tensor is proposed in [18] as Blocked
Compact Symmetric Storage (BCSS). We adopt this approach in
our implementation. The general idea of BCSS is to partition the
3-dimensional tensor into smaller 3-dimensional blocks and only
store those blocks with unique values. This is simply an extension,
to higher dimensions, of the idea of using upper/lower triangular
forms to fully represent symmetric matrices while saving on storage
and computation costs. Figure 1 shows an example where a 4⇥4⇥4
tensor is partitioned into eight 2⇥2⇥2 blocks, each with a di�erent
color. (In practice, these block don’t necessarily have the same
dimension, but they are guaranteed to be cubical). Four of those
blocks (e.g. those in the legend) have unique values and need to
be stored (the other blocks are symmetric counterparts). To index
each block, we treat each block as a single element in a tensor of
blocks. For example, the 1st block, colored green, will be denoted as
M⌫

1,1,1, to avoid being confused with the 1st scalar element of the
whole tensor. We choose to store only those blocks whose indices
are in strictly increasing order because this makes it easy to list out
those unique blocks.

This data structure is not optimal in terms of memory e�ciency
because the blocks on the hyper diagonal of a symmetric tensor
are symmetric and thus contain redundancy. More speci�cally, for
a 3-dimensional symmetric tensor X of size 2 , let the block size
be B (in Figure 1 3 = 3, 2 = 4, B = 2). There are (2/B) blocks on
each mode, resulting in

� (2/B)+3�1
3

�
blocks where each block has B3

entries. So the total storage needed with this blocked approach will
be

B3
✓
(2/B) + 3 � 1

3

◆

Whereas the storage needed for only the unique values is✓
2 + 3 � 1

3

◆

This sacri�ce of memory is justi�ed since otherwise we have to
use alternative ways of ordering the unique values of the tensor in

1In literature such symmetry over all modes is sometimes referred to as ‘super-
symmetry’, to distinguish from partial symmetry over a subset of indices. For brevity
we will refer to supersymmetry simply as symmetry.
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Figure 1: How a 4 ⇥ 4 ⇥ 4 symmetric tensor is divided into 8
2 ⇥ 2 ⇥ 2 blocks, each in a di�erent color.

memory, which causes the complexity of indexing them to increase
quickly [10].

2.6 Joint moment tensor
For input data X 2 RA⇥2 , its 3th joint moment is a 3-dimensional
symmetric tensor of total size 23 . The element-wise expression for
the 3th moment tensor M of X is shown below:

<81,82,...,83 =
1
A

A’
8 9=1

3÷
:=1

G8 9 ,8: (5)

Computing this moment tensor in this naive way is very expensive.
However, it’s easy to see that moment tensor of any matrix is
symmetric. It is natural to think about exploiting the symmetry of
the moment tensor by employing the BCSS data structure and only
computing the elements in its unique blocks.

A key expression involves joint moment tensors written in terms
of 3-way outer products of vectors [19]. If x 9 ⌘ X( 9,:) is the 9 th row
vector, then

M =
1
A

A’
9=1

x�
3

9 . (6)

We will exploit this expression to re-arrange the moment tensor
computation in terms of matrix operations which is more e�cient.

2.7 Vectorization of a tensor
It is sometimes useful to convert the tuple index of a tensor lin-
early into a single scalar index. There are multiple ways to do this
depending on how one orders the entries in the tensor. We adopt
the “column major ordering” convention and de�ne a function L to
compute such a conversion:

De�nition 2.1. Given two tuples (81, . . . , 83 ) and (�1, . . . , �3 ), where
8: 2 {1, . . . , �: }, the linear index U corresponding to (81, . . . , 83 ) is

U = L(81, . . . , 83 ; �1, . . . , �3 ) = 1 +
3’

:=1
(8: � 1)

:�1÷
;=1

�;

It’s easy to verify that the L function is injective. In fact, we can
de�ne it’s inverse function as the following:

Parallel Memory-E�icient Computation of Symmetric Higher-Order Joint Moment Tensors , ,

Now consider a matrix

Y = -)
� -)

� ....-)|                 {z                 }
? times

⌘

?»
-) .

From Equation (4) -)
� -) = [G1 ⌦ G1 |G2 ⌦ G2 |...|GA ⌦ GA ]. By

extension

Y ⌘

?»
-) = [E42 (G�

?

1 ) |E42 (G�
?

2 ) |...|E42 (G�
?

A )] .

Analogously, a matrix

Z ⌘

3�?»
-) = [E42 (G�

3�?

1 ) |E42 (G�
3�?

2 ) |...|E42 (G�
3�?

A )],

and the product

YZ) =
A’
9=1

E42 (G�
?

9 ) � E42 (G�
3�?

9 ) . (12)

Applying Equation (7) to this product, and dividing by A , gives

1
A
YZ) =

1
A

A’
9=1

"0C? (G
�
3

9 ) = "0C? (
1
A

A’
9=1

G�
3

9 ) . (13)

From Equation (6) it can now be written that the moment tensor
can be computed, in a matricized form, as product of two matrices,
each of which is a result of a series of Khatri-Rao products applied
to the raw data matrix -) :

"0C? (M) =
1
A

 ?»
-)

! ©≠
´
3�?»

-) ™Æ
¨
)

. (14)

The parameter ? (< 3) determines the split between the two matri-
ces, and it is recommended that ? = 3/2 since this keeps the size of
either matrix as small as possible2. As we will show, this refactoring
of the moment tensor computation imrpoves performance, both in
terms of computational and cache complexity.

4.2 Computing moment tensor in blocks
The previous section introduces the general idea of how to compute
the entire moment tensor with matrix operations. To leverage the
symmetry of the moment tensor we use the blocked data structure
introduced in section 2.5, which allows us to skip computing the
blocks that are redundant in the symmetry. For simplicity, let’s
assume that with input matrix X 2 RA⇥2 , the block size B can divide
2 . The building blocks of this algorithms are the column blocks of
X. In the following equations, we denote the 8th column block of
X as X8 , which is de�ned as X[:, 8B � B + 1 : 8B]. For the 4th order
moment tensor, we can compute the block with index (8, 9,:, ;) in
a matricized form as:

"0C2 (M
⌫
(8, 9,:,;) ) =

1
A
(X)

8 � X)
9 ) (X

)
: � X)

; )
) (15)

More generally, for the 3th order moment tensor, we can compute
the block with index (81, 82, . . . , 83 ) in a matricized form as:

"0C3/2 (M
⌫
(81,82,...,83 )

) =
1
A
(

d3/2e»
8=1

X)
8 ) (

3»
8= d3/2e+1

X)
8 )

) (16)

2note that 3 need not be even. The split at ? = 3/2 works even for odd 3

4.3 Complexity analyses
4.3.1 Computational complexity. For an input matrix of size A ⇥ 2
and a block size of B the number of blocks along each mode is 2/B .
For a 3th order moment tensor, the number of unique blocks will
be

� (2/B)+3�1
3

�
. Then the computational complexity of the blocked

Khatri-Rao product algorithm, per block, is:

⇡ (2AB3/2 + (2A � 1)B3 ).

Each of the two Khatri-Rao product involves B3/2 multiplications
for each of the A rows 3. The second term in the cost is due to multi-
plication of two matrices each of size A ⇥ B3/2. The total complexity
over all the unique blocks is

(2AB3/2 + (2A � 1)B3 )
✓
(2/B) + 3 � 1

3

◆
.

In comparison, the complexity of calculating it via the naïve Equa-
tion (5) is

(A3 � 1)B3
✓
(2/B) + 3 � 1

3

◆
.

The refactoring is less expensive by at least a factor ⇡ (3/2). In prac-
tice, on most modern architectures, the computational performance
is determined by memory access patterns, which are analyzed next.

4.3.2 Cache complexity. To analyze the cache-complexity we make
a few assumptions:

• An ideal cache model: Two-level memory hierarchy with
main memory (larger and slower to access) and a cache
(smaller and faster to access). The total cache size is / words,
partitioned into //! lines of size ! each. Data is moved
into cache from main memory, or evicted from cache at the
granularity of one line.

• The performance is memory bandwidth limited, and hence
cost is proportional to number of cache misses.

• The size of the moment tensor block, B , is small enough that
B < !, i.e., a cache line is large enough to hold B numbers of
the input data.

• The layout of the inputmatrix could be either row- or column-
major. We will analyse the cache misses for either case.

• The number of rows of input matrix A � !. The number
of columns 2 could be either 2 > ! or 2 < !, and we will
analyse both cases.

The key improvement of the refactored algorithm involves how
each individual block is being computed. The algorithm of Domino
et al. [6] computes each block of the tensor with a straightforward
nested for loop, which for 3-th moment is:

for 83 = 1 : s
.........
for 81 = 1 : s
for row = 1 : r
<81,...,83 += X(row,88) * ..... * X(row,83)

The cache misses for various scenarios here are:

3The number of multiplications for each row = B2+B3 . . . B3/2 = (B3/2+1�B2)/(B�1) ⇡
B3/2



• Refactored expression applies identically to sub moment tensor sub blocks: 

• Input would be column slices of X instead of the entire matrix

• Computational complexity:

• Less expensive than naïve (nested for-loops) by factor ≈ 𝑑/2.

• Cache complexity: Matrix Khatri-Rao products are very cache-friendly, leading to fewer cache misses:

• We recommend X to be row-major order. Matrix transpose (if need be) is ~𝒪(*"
6
) cache misses.

• Refactoring incurs fewer cache misses by at least ~𝒪(𝑠 7! $) (various scenarios detailed in paper).
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From Equation (6) it can now be written that the moment tensor
can be computed, in a matricized form, as product of two matrices,
each of which is a result of a series of Khatri-Rao products applied
to the raw data matrix -) :
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1
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The parameter ? (< 3) determines the split between the two matri-
ces, and it is recommended that ? = 3/2 since this keeps the size of
either matrix as small as possible2. As we will show, this refactoring
of the moment tensor computation imrpoves performance, both in
terms of computational and cache complexity.

4.2 Computing moment tensor in blocks
The previous section introduces the general idea of how to compute
the entire moment tensor with matrix operations. To leverage the
symmetry of the moment tensor we use the blocked data structure
introduced in section 2.5, which allows us to skip computing the
blocks that are redundant in the symmetry. For simplicity, let’s
assume that with input matrix X 2 RA⇥2 , the block size B can divide
2 . The building blocks of this algorithms are the column blocks of
X. In the following equations, we denote the 8th column block of
X as X8 , which is de�ned as X[:, 8B � B + 1 : 8B]. For the 4th order
moment tensor, we can compute the block with index (8, 9,:, ;) in
a matricized form as:
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(X)
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More generally, for the 3th order moment tensor, we can compute
the block with index (81, 82, . . . , 83 ) in a matricized form as:
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) =
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2note that 3 need not be even. The split at ? = 3/2 works even for odd 3

4.3 Complexity analyses
4.3.1 Computational complexity. For an input matrix of size A ⇥ 2
and a block size of B the number of blocks along each mode is 2/B .
For a 3th order moment tensor, the number of unique blocks will
be

� (2/B)+3�1
3

�
. Then the computational complexity of the blocked

Khatri-Rao product algorithm, per block, is:

⇡ (2AB3/2 + (2A � 1)B3 ).

Each of the two Khatri-Rao product involves B3/2 multiplications
for each of the A rows 3. The second term in the cost is due to multi-
plication of two matrices each of size A ⇥ B3/2. The total complexity
over all the unique blocks is

(2AB3/2 + (2A � 1)B3 )
✓
(2/B) + 3 � 1

3

◆
.

In comparison, the complexity of calculating it via the naïve Equa-
tion (5) is

(A3 � 1)B3
✓
(2/B) + 3 � 1

3
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.

The refactoring is less expensive by at least a factor ⇡ (3/2). In prac-
tice, on most modern architectures, the computational performance
is determined by memory access patterns, which are analyzed next.

4.3.2 Cache complexity. To analyze the cache-complexity we make
a few assumptions:

• An ideal cache model: Two-level memory hierarchy with
main memory (larger and slower to access) and a cache
(smaller and faster to access). The total cache size is / words,
partitioned into //! lines of size ! each. Data is moved
into cache from main memory, or evicted from cache at the
granularity of one line.

• The performance is memory bandwidth limited, and hence
cost is proportional to number of cache misses.

• The size of the moment tensor block, B , is small enough that
B < !, i.e., a cache line is large enough to hold B numbers of
the input data.

• The layout of the inputmatrix could be either row- or column-
major. We will analyse the cache misses for either case.

• The number of rows of input matrix A � !. The number
of columns 2 could be either 2 > ! or 2 < !, and we will
analyse both cases.

The key improvement of the refactored algorithm involves how
each individual block is being computed. The algorithm of Domino
et al. [6] computes each block of the tensor with a straightforward
nested for loop, which for 3-th moment is:

for 83 = 1 : s
.........
for 81 = 1 : s
for row = 1 : r
<81,...,83 += X(row,88) * ..... * X(row,83)

The cache misses for various scenarios here are:

3The number of multiplications for each row = B2+B3 . . . B3/2 = (B3/2+1�B2)/(B�1) ⇡
B3/2

Computation/Cache Complexity Analysis

Complexity for computing a d-th order moment tensor in total is:

( 2rs
d/2

+ (2r � 1)s
d
)
�(c/s)+d�1

d

�
.

Most of the computation goes into the gemm call.

The KhatriRao product is better than elementary-wise in terms of

cache e�ciency because of less cache misses.

Khatri-Rao products gemm # of blocks

Zitong Li (WFU) April 6, 2022 9 / 18
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• Each subblock of ℳ, can be computed independently:

• For distributed-memory this could be along nodes/processes/ranks.

• For shared-memory this can be along thread parallel units (e.g. GPU warps).

• Traversal along row-dimension of X can be parallel-reduced:

• For distributed-memory this is aligned with domain decomposition.

• For shared-memory this can be tiling (to reduce memory requirements).

• The matrix Khatri-Rao product (due to refactoring) exposes another level of 
parallelism.

18 Hierarchical parallelism 
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2.4 Symmetric tensor
A symmetric tensor is one whose elements have the same value for
all permutations of their indices 1. For example, an order-3 tensor
X(3) is symmetric if and only if

G8, 9,: = G8,:, 9 = G:,8, 9 = G:, 9,8 = G 9,:,8 = G 9,8,:

for any 8 , 9 , and : . All symmetric tensors are hypercubical, which
means each of its dimensions is of the same size. The following are
two obvious properties of a order-3 symmetric tensor of size 2 (i.e.
the size of each dimension is 2) :

• The total number of elements is 23 .
• The number of unique elements is at most

�2+3�1
3

�
.

From these two properties we can see that the storage and compu-
tation cost of symmetric tensor can be reduced by O(3!) if we can
exploit its symmetric nature.

2.5 Storing symmetric tensor
One way to store a symmetric tensor is proposed in [18] as Blocked
Compact Symmetric Storage (BCSS). We adopt this approach in
our implementation. The general idea of BCSS is to partition the
3-dimensional tensor into smaller 3-dimensional blocks and only
store those blocks with unique values. This is simply an extension,
to higher dimensions, of the idea of using upper/lower triangular
forms to fully represent symmetric matrices while saving on storage
and computation costs. Figure 1 shows an example where a 4⇥4⇥4
tensor is partitioned into eight 2⇥2⇥2 blocks, each with a di�erent
color. (In practice, these block don’t necessarily have the same
dimension, but they are guaranteed to be cubical). Four of those
blocks (e.g. those in the legend) have unique values and need to
be stored (the other blocks are symmetric counterparts). To index
each block, we treat each block as a single element in a tensor of
blocks. For example, the 1st block, colored green, will be denoted as
M⌫

1,1,1, to avoid being confused with the 1st scalar element of the
whole tensor. We choose to store only those blocks whose indices
are in strictly increasing order because this makes it easy to list out
those unique blocks.

This data structure is not optimal in terms of memory e�ciency
because the blocks on the hyper diagonal of a symmetric tensor
are symmetric and thus contain redundancy. More speci�cally, for
a 3-dimensional symmetric tensor X of size 2 , let the block size
be B (in Figure 1 3 = 3, 2 = 4, B = 2). There are (2/B) blocks on
each mode, resulting in

� (2/B)+3�1
3

�
blocks where each block has B3

entries. So the total storage needed with this blocked approach will
be

B3
✓
(2/B) + 3 � 1

3

◆

Whereas the storage needed for only the unique values is✓
2 + 3 � 1

3

◆

This sacri�ce of memory is justi�ed since otherwise we have to
use alternative ways of ordering the unique values of the tensor in

1In literature such symmetry over all modes is sometimes referred to as ‘super-
symmetry’, to distinguish from partial symmetry over a subset of indices. For brevity
we will refer to supersymmetry simply as symmetry.

M⌫
2,2,2

M⌫
1,2,2

M⌫
1,1,2

M⌫
1,1,1

Figure 1: How a 4 ⇥ 4 ⇥ 4 symmetric tensor is divided into 8
2 ⇥ 2 ⇥ 2 blocks, each in a di�erent color.

memory, which causes the complexity of indexing them to increase
quickly [10].

2.6 Joint moment tensor
For input data X 2 RA⇥2 , its 3th joint moment is a 3-dimensional
symmetric tensor of total size 23 . The element-wise expression for
the 3th moment tensor M of X is shown below:

<81,82,...,83 =
1
A

A’
8 9=1

3÷
:=1

G8 9 ,8: (5)

Computing this moment tensor in this naive way is very expensive.
However, it’s easy to see that moment tensor of any matrix is
symmetric. It is natural to think about exploiting the symmetry of
the moment tensor by employing the BCSS data structure and only
computing the elements in its unique blocks.

A key expression involves joint moment tensors written in terms
of 3-way outer products of vectors [19]. If x 9 ⌘ X( 9,:) is the 9 th row
vector, then

M =
1
A

A’
9=1

x�
3

9 . (6)

We will exploit this expression to re-arrange the moment tensor
computation in terms of matrix operations which is more e�cient.

2.7 Vectorization of a tensor
It is sometimes useful to convert the tuple index of a tensor lin-
early into a single scalar index. There are multiple ways to do this
depending on how one orders the entries in the tensor. We adopt
the “column major ordering” convention and de�ne a function L to
compute such a conversion:

De�nition 2.1. Given two tuples (81, . . . , 83 ) and (�1, . . . , �3 ), where
8: 2 {1, . . . , �: }, the linear index U corresponding to (81, . . . , 83 ) is

U = L(81, . . . , 83 ; �1, . . . , �3 ) = 1 +
3’

:=1
(8: � 1)

:�1÷
;=1

�;

It’s easy to verify that the L function is injective. In fact, we can
de�ne it’s inverse function as the following:

!"! !"" !"#!"$
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• Kokkos – a C++library for performance portable implementations. 

• Detailed semantics to express data and compute parallelism. 
Hardware details of memory layout and parallelism units are 
abstracted out.

• We provide Kokkos implementations with three levels of 
parallelism:

• “Thread Team” parallelism (e.g. GPU warp)

• Tile parallelism (row dimension of X)

• Thread-level parallelism

Parallel Memory-E�icient Computation of Symmetric Higher-Order Joint Moment Tensors , ,

our own Khatri-Rao product of A and B as broadcast multiplica-
tions between each column of A and the entire B. In addition, one
problem we had to solve for using matrix operations is memory
allocation/deallocation. Comparing with computing each element
of the moment tensor individually, using matrix operations needs
more memory allocation/deallocation, which can become a bottle-
neck in the algorithm if not managed properly. Speci�cally, in lines
4, 6, 9, and 11 of Algorithm 1, Julia will make copies the submatrices
instead of creating a reference. We addressed this issue by using
the @views macro, which forces those submatrices to be references
to the original input matrix. In addition, simply allocating memory
for matrices E and F when they are computed in line 9 and 10 also
result in unnecessary allocation and deallocation in each iteration
of the for loops. We address this problem by allocating memory
for those matrices outside of the loop and reusing the associated
memory when possible.

Using nested for loops to iterate through the block indices allows
us to reuse the results of some of the Khatri-Rao products. If both
Khatri-Rao product is computed in the inner-most for loop, we
will need 2

�1+3
4
�
<B2 operations for all the Khatri-Rao products. By

moving one Khatri-Rao product to the outer loop we will need
(
�1+1
2
�
+
�1+3
4
�
)<B2 operations, resulting in a saving of O(

14
24<B2)

operations. This speed up is not necessarily signi�cant especially
considering that 1 is usually fairly small in applications where the
typical shape of the input matrix X is often have much more rows
than columns.

5.1 Performance-portable implementation
with Kokkos

Note that the Julia implementation did not expose all the levels of
hierarchical parallelism described earlier. To do this e�ciently for
modern architectures we adopted the Kokkos programming model
[20] which o�ers an expressive set of semantics for performance
portable implementations by abstracting out details of memory
layout and parallel execution. We mapped the implementation to
three levels of parallelism expressible with Kokkos: (a) “team” paral-
lelism, where multiple thread teams can be issued in parallel, each
computing a separate moment tensor block, (b) thread parallelism
within a teamwith each thread computing a separate element of the
Khatri-Rao product, (c) vector parallelism along the independent
columns of the Khatri-Rao product. Algorithm 2 demonstrates our
implementation of the Khatri-Rao product, A � B with the inner
two levels of parallelism (thread and vector) devoted to this kernel.

Algorithm 2 Parallel Algorithm for the Khatri-Rao Product

1: function C = K�����R��P������(A, B)
2: ù A 2 R0⇥2 , B 2 R1⇥2

3: threads_parallel_for(8 = 1, . . . ,01)
4: vector_parallel_for( 9 = 1, . . . , 2)
5: (U, V) = T(8;0,1)
6: R8, 9 = XU, 9XV, 9

Algorithm 3 demonstrates our implementation computing the
4th moment tensor, and it illustrates the use of the highest level
team parallelism (line 7). Each team is assigned multiple blocks of

the moment tensor, which it computes sequentially within a for
loop (line 9). An alternative way of distributing the workload is
to assign one block for each team, allowing all the blocks to be
computed in parallel. However, this dictates the number of teams
to be issued and could lead to issues such as insu�cient mem-
ory when the number of blocks is large. The Kokkos construct
team_parallel_for instructs the Kokkos runtime to launch a for
loop with each iteration (potentially) executed in parallel. The total
number of unique blocks of the tensor (=1), the number of teams
(=), and the loop variable (8) yield the subset of block linear indices,
{1B , . . . ,14 }, to be computed by each team. This linear index is
mapped to the unique tensor block multi-index using the T func-
tion (see De�nition 2.2). Each team needs temporary memory to
store the result of the Khatri-Rao products, matrices Y, Z, which
are of size B2A , and this can get large enough as to make certain
problem sizes infeasible5. To overcome this a tiling technique is
used to reduce the memory requirement, whereby the Khatri-Rao
products and the ensuing matrix multiplication, are performed se-
quentially over row tiles, of size C , of X (line 13). This way of tiling
the input matrix X along rows is analogous to distributed memory
scenario where each node locally handles the computations corre-
sponding to a contiguous set of X rows. Finally, we used teamGemm
from Kokkos Kernels [16] to compute the matrix multiplication in
line 16 in parallel for the teams running concurrently.

We also implemented the reference algorithm in Kokkos using
the same team parallelism pattern in Algorithm 3, but replacing
the Khatri-Rao product portion (lines 11-16) with nested for loops
and a parallel_reduce over the threads in the team to compute
sum in Equation (5). Note that this implementation computes each
moment tensor block in parallel, which goes beyond the Domino
et al. algorithm which parallelized only along the row dimension
of input matrix while computing the tensor blocks sequentially.

Algorithm 3 Parallel Algorithm for computing the 4th moment
tensor

1: functionM(4) = 4��M�����T�����(X, =, C , B)
2: ù B = block size, C = tile size, = = # of teams, X 2 RA⇥2

3: A = A/C ù # of row tiles
4: =1< = 248; (2/B) ù # of blocks on each mode
5: =1 =

�=1<+3
4

�
ù total # of unique blocks inM(4)

6: =1 = =1/= ù # of blocks each team computes
7: teams_parallel_for(8 = 1, . . . ,=)
8: [ 1B = (8 � 1)=1 + 1, 14 = 8 (=1) ] ù blocks of this team
9: for 9 = 1B , . . . ,14 do
10: T( 9 ;=1<) 7! (81, 82, 83, 84) ù multi-index this block
11: X8; = X:,(8;�1)B+1:8;B , 8; = (81, . . . 84) ù column slices
12: for : = 1, . . . , Ā do
13: X:,8; = X(:�1)C+1::C, 8; ù :C⌘ row tile
14: Y = K�����R��P������(X)

:,82
, X)

:,88
)

15: Z = K�����R��P������(X)
:,84

, X)
:,83

)
16: M⌫

(81,82,83,84)
+ = 1

A YZ
)

5size B3/2A for general 3 th-order moment.
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our own Khatri-Rao product of A and B as broadcast multiplica-
tions between each column of A and the entire B. In addition, one
problem we had to solve for using matrix operations is memory
allocation/deallocation. Comparing with computing each element
of the moment tensor individually, using matrix operations needs
more memory allocation/deallocation, which can become a bottle-
neck in the algorithm if not managed properly. Speci�cally, in lines
4, 6, 9, and 11 of Algorithm 1, Julia will make copies the submatrices
instead of creating a reference. We addressed this issue by using
the @views macro, which forces those submatrices to be references
to the original input matrix. In addition, simply allocating memory
for matrices E and F when they are computed in line 9 and 10 also
result in unnecessary allocation and deallocation in each iteration
of the for loops. We address this problem by allocating memory
for those matrices outside of the loop and reusing the associated
memory when possible.

Using nested for loops to iterate through the block indices allows
us to reuse the results of some of the Khatri-Rao products. If both
Khatri-Rao product is computed in the inner-most for loop, we
will need 2

�1+3
4
�
<B2 operations for all the Khatri-Rao products. By

moving one Khatri-Rao product to the outer loop we will need
(
�1+1
2
�
+
�1+3
4
�
)<B2 operations, resulting in a saving of O(

14
24<B2)

operations. This speed up is not necessarily signi�cant especially
considering that 1 is usually fairly small in applications where the
typical shape of the input matrix X is often have much more rows
than columns.

5.1 Performance-portable implementation
with Kokkos

Note that the Julia implementation did not expose all the levels of
hierarchical parallelism described earlier. To do this e�ciently for
modern architectures we adopted the Kokkos programming model
[20] which o�ers an expressive set of semantics for performance
portable implementations by abstracting out details of memory
layout and parallel execution. We mapped the implementation to
three levels of parallelism expressible with Kokkos: (a) “team” paral-
lelism, where multiple thread teams can be issued in parallel, each
computing a separate moment tensor block, (b) thread parallelism
within a teamwith each thread computing a separate element of the
Khatri-Rao product, (c) vector parallelism along the independent
columns of the Khatri-Rao product. Algorithm 2 demonstrates our
implementation of the Khatri-Rao product, A � B with the inner
two levels of parallelism (thread and vector) devoted to this kernel.

Algorithm 2 Parallel Algorithm for the Khatri-Rao Product

1: function C = K�����R��P������(A, B)
2: ù A 2 R0⇥2 , B 2 R1⇥2

3: threads_parallel_for(8 = 1, . . . ,01)
4: vector_parallel_for( 9 = 1, . . . , 2)
5: (U, V) = T(8;0,1)
6: R8, 9 = XU, 9XV, 9

Algorithm 3 demonstrates our implementation computing the
4th moment tensor, and it illustrates the use of the highest level
team parallelism (line 7). Each team is assigned multiple blocks of

the moment tensor, which it computes sequentially within a for
loop (line 9). An alternative way of distributing the workload is
to assign one block for each team, allowing all the blocks to be
computed in parallel. However, this dictates the number of teams
to be issued and could lead to issues such as insu�cient mem-
ory when the number of blocks is large. The Kokkos construct
team_parallel_for instructs the Kokkos runtime to launch a for
loop with each iteration (potentially) executed in parallel. The total
number of unique blocks of the tensor (=1), the number of teams
(=), and the loop variable (8) yield the subset of block linear indices,
{1B , . . . ,14 }, to be computed by each team. This linear index is
mapped to the unique tensor block multi-index using the T func-
tion (see De�nition 2.2). Each team needs temporary memory to
store the result of the Khatri-Rao products, matrices Y, Z, which
are of size B2A , and this can get large enough as to make certain
problem sizes infeasible5. To overcome this a tiling technique is
used to reduce the memory requirement, whereby the Khatri-Rao
products and the ensuing matrix multiplication, are performed se-
quentially over row tiles, of size C , of X (line 13). This way of tiling
the input matrix X along rows is analogous to distributed memory
scenario where each node locally handles the computations corre-
sponding to a contiguous set of X rows. Finally, we used teamGemm
from Kokkos Kernels [16] to compute the matrix multiplication in
line 16 in parallel for the teams running concurrently.

We also implemented the reference algorithm in Kokkos using
the same team parallelism pattern in Algorithm 3, but replacing
the Khatri-Rao product portion (lines 11-16) with nested for loops
and a parallel_reduce over the threads in the team to compute
sum in Equation (5). Note that this implementation computes each
moment tensor block in parallel, which goes beyond the Domino
et al. algorithm which parallelized only along the row dimension
of input matrix while computing the tensor blocks sequentially.

Algorithm 3 Parallel Algorithm for computing the 4th moment
tensor

1: functionM(4) = 4��M�����T�����(X, =, C , B)
2: ù B = block size, C = tile size, = = # of teams, X 2 RA⇥2

3: A = A/C ù # of row tiles
4: =1< = 248; (2/B) ù # of blocks on each mode
5: =1 =

�=1<+3
4

�
ù total # of unique blocks inM(4)

6: =1 = =1/= ù # of blocks each team computes
7: teams_parallel_for(8 = 1, . . . ,=)
8: [ 1B = (8 � 1)=1 + 1, 14 = 8 (=1) ] ù blocks of this team
9: for 9 = 1B , . . . ,14 do
10: T( 9 ;=1<) 7! (81, 82, 83, 84) ù multi-index this block
11: X8; = X:,(8;�1)B+1:8;B , 8; = (81, . . . 84) ù column slices
12: for : = 1, . . . , Ā do
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, X)

:,88
)
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5size B3/2A for general 3 th-order moment.
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21 Serial performance

• All experiments for 4th-order moment tensor, ℳ/.

• Serial Julia implementation compared against reference implementation (Domino et al., 2018),  AMD EPYC 7302.

• Parameters:  𝑟 – rows of X,       𝑐 – cols of X,     𝑠 – size of each subblock

, , Zitong Li, Hemanth Kolla, and Eric T. Phipps

6 EXPERIMENTAL EVALUATION
We present experimental results comparing our refactored algo-
rithm against the reference algorithm for di�erent implementations.
We choose problem sizes corresponding to the example of anom-
aly detection applied to combustion simulations [1]. This method
computes the 4th-order moment tensor on each MPI rank, and the
number of grid points (rows of input matrix) are typically in the
range O(103 � 107) with the number of solution variables (columns
of input matrix) in a range O(10� 100) for combustion simulations.

6.1 Julia results
The experiments with the Julia implementation are conducted on a
laptop with a Intel Ice Lake i7 CPU running on a base frequency
of 2.3 GHz. In all the experiments we are only using 1 thread on
1 core. The input for this experiment is a randomly generated
matrix. In our case, the typical shape for the input matrix is tall
and skinny. The number of rows can range from the thousands
to tens of thousands while the number of columns is usually no
more than 100. The results of the following two experiments are
shown in Figure 2. In the �rst experiment experiment we �xed the
number of rows of the input matrix to 1000 and the block size to
2 and vary the number of columns. Comparing the time for the
two implementations (Figure 2, top) shows a consistent speed up
of around 5x to 10x.

In this next experiment, we �xed the number of columns of the
input matrix to 30 and the block size to 2 and vary the number of
rows. The comparison (Figure 2, bottom) again show a speed up of
around 5x to 10x. The reason for the speed up in both these experi-
ments is mostly due to the cache e�ciency of matrix operations.

6.1.1 Optimal block size. In this experiment, we test the impact of
having di�erent block size has on the performance. we �xed the
number of columns of the input matrix to 1000 and the block size to
30 and varied the block size. The time for the two implementations
are recorded in Figure 3. We can see that for the implementation
from [6], as the block size increase, the performance decreases.
However, for our implementation, increasing the block size to an
extent will result in increase in performances. Speci�cally, going
from a block size of 2 to a block size of 3 results in a nearly 2x
speed up. This is because when the block size increases, the number
of computation increases while the number of matrix operations
needed decreases. When starting from a small block size such as
2, the bene�t of launching less matrix operations overweighs the
cost of the increase in computation. The optimal block size that we
recorded is around 20. However, the optimal block size is most likely
dependant on the hardware and has to be tuned. More importantly,
increasing the block size not only increases the �op count but also
increases the memory needed to store the �nal moment tensor as
the redundancy in the diagonal blocks increases. That being said,
even with the block size being suboptimal such as 2, we are still
seeing a signi�cant speed up of about 5x using our algorithm.

6.2 Kokkos results
We evaluated the performance of our Kokkos-based implementation
on a NVIDIA Volta Tesla V100 GPU by con�guring Kokkos with the
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CUDA backend. The multiple levels of parallelism in the Kokkos
implementation, described in Section 4.4 and 5.1, are likely to give
di�erent performance trends than the single-thread performance of
the Julia implementation. The performance of the reference and the
refactored algorithms are compared in Figure 4. The trends show

Fig. Trend with varying block size
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number of grid points (rows of input matrix) are typically in the
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number of rows of the input matrix to 1000 and the block size to
2 and vary the number of columns. Comparing the time for the
two implementations (Figure 2, top) shows a consistent speed up
of around 5x to 10x.

In this next experiment, we �xed the number of columns of the
input matrix to 30 and the block size to 2 and vary the number of
rows. The comparison (Figure 2, bottom) again show a speed up of
around 5x to 10x. The reason for the speed up in both these experi-
ments is mostly due to the cache e�ciency of matrix operations.

6.1.1 Optimal block size. In this experiment, we test the impact of
having di�erent block size has on the performance. we �xed the
number of columns of the input matrix to 1000 and the block size to
30 and varied the block size. The time for the two implementations
are recorded in Figure 3. We can see that for the implementation
from [6], as the block size increase, the performance decreases.
However, for our implementation, increasing the block size to an
extent will result in increase in performances. Speci�cally, going
from a block size of 2 to a block size of 3 results in a nearly 2x
speed up. This is because when the block size increases, the number
of computation increases while the number of matrix operations
needed decreases. When starting from a small block size such as
2, the bene�t of launching less matrix operations overweighs the
cost of the increase in computation. The optimal block size that we
recorded is around 20. However, the optimal block size is most likely
dependant on the hardware and has to be tuned. More importantly,
increasing the block size not only increases the �op count but also
increases the memory needed to store the �nal moment tensor as
the redundancy in the diagonal blocks increases. That being said,
even with the block size being suboptimal such as 2, we are still
seeing a signi�cant speed up of about 5x using our algorithm.

6.2 Kokkos results
We evaluated the performance of our Kokkos-based implementation
on a NVIDIA Volta Tesla V100 GPU by con�guring Kokkos with the
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CUDA backend. The multiple levels of parallelism in the Kokkos
implementation, described in Section 4.4 and 5.1, are likely to give
di�erent performance trends than the single-thread performance of
the Julia implementation. The performance of the reference and the
refactored algorithms are compared in Figure 4. The trends show

Fig. Trend with varying #columns
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6 EXPERIMENTAL EVALUATION
We present experimental results comparing our refactored algo-
rithm against the reference algorithm for di�erent implementations.
We choose problem sizes corresponding to the example of anom-
aly detection applied to combustion simulations [1]. This method
computes the 4th-order moment tensor on each MPI rank, and the
number of grid points (rows of input matrix) are typically in the
range O(103 � 107) with the number of solution variables (columns
of input matrix) in a range O(10� 100) for combustion simulations.

6.1 Julia results
The experiments with the Julia implementation are conducted on a
laptop with a Intel Ice Lake i7 CPU running on a base frequency
of 2.3 GHz. In all the experiments we are only using 1 thread on
1 core. The input for this experiment is a randomly generated
matrix. In our case, the typical shape for the input matrix is tall
and skinny. The number of rows can range from the thousands
to tens of thousands while the number of columns is usually no
more than 100. The results of the following two experiments are
shown in Figure 2. In the �rst experiment experiment we �xed the
number of rows of the input matrix to 1000 and the block size to
2 and vary the number of columns. Comparing the time for the
two implementations (Figure 2, top) shows a consistent speed up
of around 5x to 10x.

In this next experiment, we �xed the number of columns of the
input matrix to 30 and the block size to 2 and vary the number of
rows. The comparison (Figure 2, bottom) again show a speed up of
around 5x to 10x. The reason for the speed up in both these experi-
ments is mostly due to the cache e�ciency of matrix operations.

6.1.1 Optimal block size. In this experiment, we test the impact of
having di�erent block size has on the performance. we �xed the
number of columns of the input matrix to 1000 and the block size to
30 and varied the block size. The time for the two implementations
are recorded in Figure 3. We can see that for the implementation
from [6], as the block size increase, the performance decreases.
However, for our implementation, increasing the block size to an
extent will result in increase in performances. Speci�cally, going
from a block size of 2 to a block size of 3 results in a nearly 2x
speed up. This is because when the block size increases, the number
of computation increases while the number of matrix operations
needed decreases. When starting from a small block size such as
2, the bene�t of launching less matrix operations overweighs the
cost of the increase in computation. The optimal block size that we
recorded is around 20. However, the optimal block size is most likely
dependant on the hardware and has to be tuned. More importantly,
increasing the block size not only increases the �op count but also
increases the memory needed to store the �nal moment tensor as
the redundancy in the diagonal blocks increases. That being said,
even with the block size being suboptimal such as 2, we are still
seeing a signi�cant speed up of about 5x using our algorithm.

6.2 Kokkos results
We evaluated the performance of our Kokkos-based implementation
on a NVIDIA Volta Tesla V100 GPU by con�guring Kokkos with the
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CUDA backend. The multiple levels of parallelism in the Kokkos
implementation, described in Section 4.4 and 5.1, are likely to give
di�erent performance trends than the single-thread performance of
the Julia implementation. The performance of the reference and the
refactored algorithms are compared in Figure 4. The trends show
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22 Parallel performance

• All experiments for 4th-order moment tensor, ℳ/.

• Kokkos implementation compared against reference implementation (Domino et al., 2018),  NVIDIA Tesla V100.

• Parameters:  𝑟 – rows of X,       𝑐 – cols of X,     𝑠 – size of each subblock

Parallel Memory-E�icient Computation of Symmetric Higher-Order Joint Moment Tensors , ,

that for all problem sizes the refactored algorithm outperforms the
reference algorithm, and the performance improvement increases as
the three relevant parameters are varied:<-number of rows of input
matrix,=-number of columns, B-block size. The trends are consistent
with the performance trends of the Julia implementation, which
illustrates that the performance gains are realized even in parallel
implementation. This is important since the complexity analysis
presented earlier did not consider any parallelism and is strictly
valid for a sequential execution. The computational complexity
analysis suggested that, to leading order, the refactored algorithm is
less expensive by a factor ⇡ (3/2) which, for the 4th-order moment
tensor, is 2. The comparisons in Figure 4 show that, except for the
smaller problem sizes (block size B = 2, see center plot), for most
problem sizes the improvement is greater than a factor 2, indicating
that the improvements due to better memory access patterns (lower
cache complexity) are responsible. The Julia results show greater
speed up even for the smallest problem size.

We also compared performance by pro�ling the two implemen-
tations using NVIDIA’s CUDA pro�ler nvprof. Speci�cally, we
collected the total number of double precision �oating point op-
erations, the total number of bytes loaded from and stored to the
level-1 (L1) cache (the bytes transactions to other memory levels
were orders of magnitude smaller). Figure 5 (top) shows the �ops
and L1-memops metrics collected by the pro�ler varying with the
block size. Themain trends are that, while the �ops increase for both
algorithms, the memory transactions increase with the block size
for the reference algorithm while they decrease for the refactored
algorithm. This suggests that, as the tensor is computed in increas-
ingly large blocks, the refactored algorithm perfroms better in terms
of memory accesses. The computational intensity (�ops-to-bytes
ratio) show in Figure 5 (bottom) con�rm this trend. The reference
algorithm has a low computational intensity (⇡ 0.125) for all block
sizes, whereas it improves for the refactored algorithm eventually
crossing unity (shifts from memory-bound to compute-bound).

7 CONCLUSIONS AND FUTURE WORK
In this work we present an e�cient way of computing higher-order
joint moment tensors that takes advantage of its symmetry while
being more e�cient in terms of computational and memory access
costs compared to the state-of-art algorithm. Exploiting the fact
that the moment tensor can be computed using multi-way outer
products of (row) vectors of the input matrix, our refactoring poses
the computation in terms of matrix Khatri-Rao products and a �nal
matrix multiplication. An analysis of the computational and cache
complexity reveals the performance gains due to such a refactoring.
We present e�cient implementations of the refactored algorithm,
for serial execution in Julia as well as thread-parallel execution
exploiting hierarchical parallelism with the Kokkos programming
model. Experimental evaluations show that the performance gains
of the refactored algorithm hold across these implementations,
architectures, and problem sizes, and the performance trends are
consistent with the complexity analyses.

While the implementations, and results, shown here are for
shared memory architectures, it is easy to extend the ideas to a
distributed memory HPC setting, for which the input matrix is

Figure 4: Comparisons of Kokkos implementations of
the reference and refactored algorithms for various prob-
lem sizes (A -number of rows of input matrix, 2-number of
columns, B-block size). (Top) Execution time variation with
= (�xed A = 107, B = 6). (Center) Execution time variation
with B (�xed A = 107, 2 = 30. (Bottom) Execution time varia-
tion with< (�xed 2 = 30, B = 6).

typically decomposed along the row dimension. The refactored al-
gorithm translates to a kernel that is embarrassingly parallel (local

𝑟 = 107

𝑐 = 30

Fig. Trend with varying block size Fig. Trend with varying #columns

Parallel Memory-E�icient Computation of Symmetric Higher-Order Joint Moment Tensors , ,

that for all problem sizes the refactored algorithm outperforms the
reference algorithm, and the performance improvement increases as
the three relevant parameters are varied:<-number of rows of input
matrix,=-number of columns, B-block size. The trends are consistent
with the performance trends of the Julia implementation, which
illustrates that the performance gains are realized even in parallel
implementation. This is important since the complexity analysis
presented earlier did not consider any parallelism and is strictly
valid for a sequential execution. The computational complexity
analysis suggested that, to leading order, the refactored algorithm is
less expensive by a factor ⇡ (3/2) which, for the 4th-order moment
tensor, is 2. The comparisons in Figure 4 show that, except for the
smaller problem sizes (block size B = 2, see center plot), for most
problem sizes the improvement is greater than a factor 2, indicating
that the improvements due to better memory access patterns (lower
cache complexity) are responsible. The Julia results show greater
speed up even for the smallest problem size.

We also compared performance by pro�ling the two implemen-
tations using NVIDIA’s CUDA pro�ler nvprof. Speci�cally, we
collected the total number of double precision �oating point op-
erations, the total number of bytes loaded from and stored to the
level-1 (L1) cache (the bytes transactions to other memory levels
were orders of magnitude smaller). Figure 5 (top) shows the �ops
and L1-memops metrics collected by the pro�ler varying with the
block size. Themain trends are that, while the �ops increase for both
algorithms, the memory transactions increase with the block size
for the reference algorithm while they decrease for the refactored
algorithm. This suggests that, as the tensor is computed in increas-
ingly large blocks, the refactored algorithm perfroms better in terms
of memory accesses. The computational intensity (�ops-to-bytes
ratio) show in Figure 5 (bottom) con�rm this trend. The reference
algorithm has a low computational intensity (⇡ 0.125) for all block
sizes, whereas it improves for the refactored algorithm eventually
crossing unity (shifts from memory-bound to compute-bound).

7 CONCLUSIONS AND FUTUREWORK
In this work we present an e�cient way of computing higher-order
joint moment tensors that takes advantage of its symmetry while
being more e�cient in terms of computational and memory access
costs compared to the state-of-art algorithm. Exploiting the fact
that the moment tensor can be computed using multi-way outer
products of (row) vectors of the input matrix, our refactoring poses
the computation in terms of matrix Khatri-Rao products and a �nal
matrix multiplication. An analysis of the computational and cache
complexity reveals the performance gains due to such a refactoring.
We present e�cient implementations of the refactored algorithm,
for serial execution in Julia as well as thread-parallel execution
exploiting hierarchical parallelism with the Kokkos programming
model. Experimental evaluations show that the performance gains
of the refactored algorithm hold across these implementations,
architectures, and problem sizes, and the performance trends are
consistent with the complexity analyses.

While the implementations, and results, shown here are for
shared memory architectures, it is easy to extend the ideas to a
distributed memory HPC setting, for which the input matrix is

Figure 4: Comparisons of Kokkos implementations of
the reference and refactored algorithms for various prob-
lem sizes (A -number of rows of input matrix, 2-number of
columns, B-block size). (Top) Execution time variation with
= (�xed A = 107, B = 6). (Center) Execution time variation
with B (�xed A = 107, 2 = 30. (Bottom) Execution time varia-
tion with< (�xed 2 = 30, B = 6).

typically decomposed along the row dimension. The refactored al-
gorithm translates to a kernel that is embarrassingly parallel (local
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23 Cache performance 

• All experiments for 4th-order moment tensor, ℳ/.

• Kokkos implementation compared against reference implementation (Domino et al., 2018),  NVIDIA Tesla V100.

• Flops and MemOps (L1-cache) measured with nvprof.
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Fig. Trend with varying block size
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Fig. Trend with varying block size
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26 Formalizing Distributed Rare Event Detection

• Compute Principal Kurtosis Vectors on each data partition (e.g.  
processor).

• Compare the vectors amongst partitions in space and/or time:

• Proposed Feature moment metrics (fraction of the kurtosis attributable to 
each variable) to quantify orientation of Kurtosis vectors.

• FMMs sum to unity, akin to discrete distribution. 

• Divergence metric (Hellinger distance) to compare across partitions.

• Most computation (cokurtosis tensor and principal vectors) is local.

• Communication only of a small vector of numbers (FMMs).
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“Anomaly detection in scientific data using joint statistical moments.”  K.  Aditya, H. Kolla, W.P. Kegelmeyer, 
T.M. Shead, J. Ling, W.L. Davis IV, Journal of Computational Physics, 2019.
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Intermediate species 

Temperature

Anomaly 
metric

Ignition kernel (temperature 
iso-surface colored by CH2O 

density)

Identification currently based 
on ad-hoc thresholds

Validation: co-kurtosis tensor-based 
unsupervised anomaly detection

Contributors: Martin Rieth, Jackie Chen, Marco Arienti, Janine Bennett (Sandia Natl. Labs), Matt Larsen (formerly at LLNL)

Pele: PeleLM, adaptive-mesh low 
Mach number hydrodynamics 
code for reacting flows

Ignition detection in exascale combustion code

PASC, 27TH JUNE 2022


