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Granular Materials are Ubiquitous @E.

= Porous & granular materials
important for many applications
in HEDP

= |ron oxide studied in context of
planetary formation/impact

= silica aerogel used to mimic
liquid deuterium and impedance
match target materials

= New materials from extreme
states of matter

= New energy sources — ICF

= Shocked porous material reach [
higher temperatures at a given wro | 7, f
density — gives flexibility in R
accessing phase space ol / |
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More Particulate Materials at SNL

Energetic materials

P

polymer powder, pastes)

————

Additive manufacturing (metal,

Spray coating
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Ceramic piece parts,

Battery manufacturing
3 glass ceramics

.. and more!

Processing operations: re-crystallization, spray drying, milling, mixing/blending, granulation, die-filling,

compaction, sintering, ...

Approaches to particle/powder characterization and specification vary widely across these areas.
How do we get beyond “magic barrels” and design feedstocks/process to optimize device performance?

Examples:
Metal additive manufacturing powders

= Chemical composition: min and max for desired elements,
max weight percent for other elements (contaminants)

=  Particle size: min and max D10, D50, D90

= Particle shape: min and max aspect ratio, sphericity

=  Flowability: max. Hausner ratio

0.90

0.85

0.80 |

Energetic materials
= Small scale/high consequence
= Specifications often based on empirically matching legacy
materials
= Extensive characterization efforts on-going: single-particle
micromechanics, bulk compaction, imaging, DEM mod/sim




Process, Property, Performance Nexus:
Role of Microstructure

= Need better prediction and control of .
performance, reliability and safety of, e.g.,

= Energetic components

= Energy storage devices

= Heterogeneous materials
= “discontinuous” properties and discrete
microstructure
= multi-phase, multi-material = interfaces
= Heterogeneous “dynamics”

= Spatial distribution of (relaxation) timescales
= “Anomalous” stochastic behavior
= Generalized Stochastic Models

= How do fluctuations couple to nonlinearities?
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Reaction at Time = 0,00 ps

X=07%cm
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Safety: Thermal Runaway/Cookoff

= Performance questions
= How effective is it?
= How reliable is it?

= Safety questions

= Given conditions, go or no-go?

= How certain are you?

pC aT __

var =V (KVT) + hypr

r = AdpApT™exp(5H2) [PETN]

= Sources of uncertainty
= Epistemic
= Model parameters

= Aleatoric
= Model form

@ foirat fire time when EBWs are operational (not safe}
® feiat fire time when EBWs are non-operational (duds)
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Theory: Frank-Kamenetskii/Semenov .

= Reaction-Diffusion equation I M
g lign _
" Homogenous, isotropic material tag  (8/8.—DV2 | e
= Thermal conduction -
T - = === = '—_—.:-Cl‘ltlcgl‘
= Arrhenius type chemistry Teuberiticl
|
a0 1 1 l
a. = —vzg + —EBK(IJFEB) | tad = tchem(RTg/E)&Tad '
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The Multi-scale Transport through Particulate Media (rh) i

Laboratories

(3) Sub-particle

(1) Bulk, Macroscale materials structure
« Homogeneous * Crystal structure

e “Continuum” * Anisotropy

- Constant transport coef. . .defec’g[s:,
0=V-q(x)=K,,V-(VI(x)) ;Tcpurl les,
@) Polycrystalline
%) * Grain
3 boundaries
L

(2) Particle-Particle (Meso-
structure) Scale

* Inhomogeneous
 “Discrete”; Disordered
* “Anomalous” transport
0=V-q(x)=V-(K(X)VT(x)

) (4) Interfacial Scale
« Contact area, roughness, inter-diffusion
* Material types (e.g., phonon, electron dominated)
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Background: Random Walks in Particle Packs

Temperature

= Jammed particles near “Point J”

= Critical-like “point” of marginal mechanical
stability

= Control of apparent microstructural length scale
= Well defined process for creating packs
= Remove “rattlers” s

= Random Walker Simulations %
= Random walkers initially uniformly b
distributed within particles ‘

= Particles conducting; voids insulating

= Reflecting (specular) BC at interface
— Neumann-like, no-flux

= Global periodic simulation domain

1/Density
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Conductivity of Particulate Microstructures

MSD(?)

Results
= Late-time D. function of pressure

= Controlled by particle contact radius
= Apparently, single relevant timescale

p=0.04
p=0.02
— p=0.008

—_— 0004
p=0.002
p =0.0008
p =0.0004
— p =0.0002

p =0.00004
— p =0.000004

p =0.0000004

Decreasing pressure
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D, or effective conductivity
=
un

:
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o

A “tortuosity”
. VR _T_=_Dm/_D_Q




Bulk Thermal Conductivity )

= Volume averaged MFPT per particle

= Narrow Escape
; <<d, r; <<d)

= Largest Eigen value of Laplace operator in sphere
with mixed BC’s

e
Cheviakov et al. (2010), Multiscale J
i
\a

= Small, well separated contacts (a

Model. Simul., v.8, pp.836—-870

ij

0.4 ||| §1|:| a“]i. '-_- d ﬁ-_‘.r_';n'-_-D
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= Particle averaged, volume averaged MFPT ~ bulk conductivity
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Microstructural Details: Particle-Particle

Interfaces

 Difference from, say, SC .
lattice — disordered graph ="” // \ ....... Gumbel
— Distribution of coord. #'s E“-“z' | o T
— Distribution of = o Weibull ~\ J
forces/“overlaps” F\h
-+ Distribution of contact radii 0000 0.002 0.004 0.006 0.008 0.010 0.012 0.014
* Distribution of volume- 2R contact/d
=1 averaged MFPT 0.04
a — Narrow Escape f
I | » Multiple, well separated (a 0.03; ;’\
Ll << d) contacts ~ \
=y » Largest Eigen value of £ 002 \
Laplace Operator in oo |\ Frechet .=
- | \ '

M&%\/@\“’ spherical domain with [ |
mixed (Dirichlet and L] S
Neumann) BC’s 000 B
0 20 40 60 80 100 120 140
MFPT,
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Discretizing the Mesoscale

= Reduced-order, network modeling based on random walk
simulations/analysis for thermal conduction in particle packs

m i

vity J 1 4D.a,
i Lij — ~ J
‘_E-..';F' \a i Tij Vi

Determine: edge weights (interfacial
resolution and physics models)

Image stack,
or simulated
ustructure

or =V (k(r)V7)

dt graph of contact network

§ R

T (1)
ot ; LijT;(t) ' |

Transitibn ai?a'tle I(/Iat?ix,ﬂGraph Laplacian ...




Thermal Runaway ) &

10
................... 8
. . - = s§
= Add nonlinearity 200 4 _, A
= Jstorder, irreversible reactions 150 0020 400 600 200 100
T time
oT (1 8 1000 [
(1) =S LT+ C keyepluRr] O
at J#i 174
50; -
= Periodic BC’s (adiabatic) o I
= |C: unit impulse to particlei 300 400 500 600 700 800 900 100
time

"= Time to thermal runaway depends on
particle, i
= Varying “sensitivity” for different particles
= Stochastic problem due to disorder in pack

= |nteraction of fluctuations (due to
disordered mesostructure) and
nonlinearity

)




Evolution of Temperature Fluctuations ™ &

1 (6T; (0)4T; (1))
* Calculate distribution of temperature ~N\
fluctuations bas%d on Eigen decompﬁosition 01

OT(D) =T(6) ~Teg = Y ety OT®) =y e (v) Fo°

. . i '
1_2 J—z 1072 .n '!.-..I/

* Autocorrelation of fluctuations decay in time as LS N
system homogenizes e e T e e roe 10°
* Consistent with Effective conductivity "
y
aT v2T
. = Qeff = 0.100}
at E
* For sum of IID Gaussian random variables, a large = "
deviation (LD) approximation can be obtained 0.001

a(t)
= Initially, Gaussian seems to work :

* However, scaling of excess Kurtosis does not follow
Gaussian behavior

* Fluctuations decay but slower

2
P(6T; = 6T )~exp[—%N (ﬁ)

=
5
=

0.100
0,050

wKurt[P{ET{H

@
o
S
=

0.0050"




Eigenvector Statistics _5 ) g

For ordered structure, each particle
contributes like an independent, gaussian-
distributed random quantity for each of
the N-1 eigenvectors associated with each
eigenvalue

For disordered structure, each particle
contributes in a more complicated manner
Ordered packs are locally and globally 2 “ i .'|w|'| _|_ ‘/'e\ /
homogeneous; disorder packs are globally e Ao | o
homogeneous but locally not so

Statistical runaway time for disordered
systems related to anomalous statistics in
spectral properties of network transport
operator

0.015 0020 0.025 0.030

— '” I




Stat. Mech of Trajectories: | e
Large Deviations

Laboratories
* Thermo. formalism for Markovian dynamics

0.3

T _yr ”
ot 01
= Define time integrated observable b2 700 01 ez 03 04 05
K-1
A(t) = Z a(Cp Cpy1) =1
n=1

= Write master equation for the Laplace Transform
T,(i,s,t) =Y e 4T,(i,A, t)
= At large times

TA (EJ S, t) ~ lpl'.] etlA(SJ

I(a)
SOHMNNW
cououwouwo

As(s) = maax[f(a) —sa]l I(a) = msin[AA (s) + sa]

- —12,1 =Ly =2
ds| ~NZM TN T
s=0 -

Lecomte et al., Journal of Statistical Physics, Vol. 127, No. 1, April

"

0'0—00.2 -01 00 01 02 03 04 05



Localization Theory: landscape ) i,
function S .

= Define landscape function

u(x) = f 16(x,y)|dy

Q

500

where G is the Green’s

50

function, ()= () .

0.50
0.0124 0.0125 0.0126 0.0127 0,0128 0,0129 0,0130

= Modes localized to regions
where u(x) < 1/,

1000

100

N
Hxy) = ) e MY oni)
i=1

v 1
Z lpl', (x) lp[ 0’) 0.70 ﬁ.?LH'd.Bn'|'o|.L'5 L'.'gn' 0.95 Llnﬁ
: A
=2

G(x,y) =f Hydt =
0




Summary & Conclusions ) .

= Reduced-order, network-type model of thermal transport on
particulate materials is possible

= Spectral analysis of conduction matrix allows for development of
macro-scale models and analysis of thermal fluctuations due to
disordered microstructure
= Addition of nonlinearity due to chemical reactions can be
accomplished

= Comparison to classical Frank-Kamenetskii problem shows similar
critical slowing down near critical point

= However, details of thermal runaway time show statistical
characteristics due to disorder of microstructure

= DMD-type analysis allows for possibility of extending spectral analysis
from linear to nonlinear equations through approximation of (linear)
Koopman Operator

18
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Fig. 9. Legendre-Fenchel transforms connecting (a) a nonconvex rate function [(s), (b) its associated scaled cumulant generating function i(k), and
(c) the convex envelope [**(s) of I(s). The arrows illustrate the relations [* = A, A* = [** and (I**)* = J.

a b
Ak
1) (k)
. ke
N
1"*(s) 1 si 5 k

Fig. 10. (a) Nonconvex rate function | and its convex envelope [**. (b) Associated scaled cumulant generating function A(k) having a nondifferentiable
point at k.
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Simulate Markov Process on Contact Network (i)t
" Discretize Continuous-Time Equation
8;51‘) LT() L b 3D a% oy :> T,, =MT,
c1cT, =6 [6]=1 —;LI, i =] M =1+A/L

= Periodic B.C.’s
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= Eigenvectors

= small eigenvalues show plane
Cf. Silbert et al. (2009), PRE v.79, p.021308

= (Close to Porter-Thomas

distribution
= But, not quite )
cf. Manning and Liu (2015), EPL v.109, p.36002 Iﬁ
Eigenvector for large A Eigenvector for small A 23




- N =F\ Q=1
Large Deviations ]
0.04
= Process-structure oo
. _ 0;5\\-----1 |
StrUCtU re property 0.4 ‘\.\ 0'08.-000 0.001 0.002 _: 0.003
= LD of sums of random varia.” %"
1 0.2 N, u.w;
_ 0.1 0.05
Sn - n Z Xn 082 Z01 00 01 02z 03 04 n:s u.u-u.

1

P(S, =s)=e™

= Statistical Mechanics of
“Trajectories”

- -
| 9
- )

Mormalized P(a)
3

MNormalized P(a)

= Use thermodynamic formalism ;., e nm e e o
for systems with Markovian R
dynamics AR

= Obtain convergence (in F 010
distribution) of fluctuations in 005

diffusion coefficient 0%

™ ]
ﬁ



Extending spectral analysis to discrete (@i,
approximation of Koopman Operator

= Use homogeneous IC and Dirichlet BC’s

= Scaling of time to ignition follows classical 5.x10°® S
homogeneous result; exhibiting critical 4.%10° P
slowing down c 3,610

tign"'(l — 5/5:’:)_1/2 2.x10°8 % l
: N _ =
where 0 is the Frank-Kamenetskii parameter 10 —
o4 ime
0}

= Expected that system will be sensitive 14 16 18 20 22 24 26 28
to “large deviations” (i.e., fluctuations
stronger than Guassian) o

= DMD eigenvalues can be computedasa " —
function of the strength of the S
nonlinearity -

0 200 400 600 800

* Interpretation and verification of analysis is index
ongoing




Stochastic Models )
= Nicolis and Baras (1987)

= Recall Semenov problem, f — 0

o 1 o 1 )
E=aef’/(1+ﬂ’3 — o HF® - &= tFO
(F(t))=10 0())=0
(F(OF(t")) = (Cenem/taa + Cr/tn)o(t — t") (B()O(t"))~e~Et)/tn

= What about the Frank-Kamenetzkii problem, f — o

= Replace master equation for inhomogeneous material with generalized
Langevin equation for homogeneous material with memory

06 t -z @)
__ =2 o Lo (E(E(t") ~M(t - t)
= Cf_m( s ot ))9(1: Ydt' + E(t)

@)=0

(BB ~(t )
26




Sandia
ﬂ'l National
Laboratories

Example Simulation

= Random walk through interior of particles, where diffusion coefficient D, =1

= Similar to method of Kim and Torquato!(“walk on spheres”), but modified to yield
time-dependent behavior
= Random walker displacement relates to material properties

=  “Narrow escape” hopping between neighboring particles requires long simulation
times, but accounts for small contacts explicitly and accurately

1. Kim IC and Torquato S., J. Appl. Phys. 68 (1990): 3892; Kim IC and Torquato S., J. Appl. Phys. 69 (1991): 2280 27




Homogenized Models: Bridging particle g,
meso-scale to Bulk scale

Laboratories
= Consider Continuous-Time Random Walk a la Montroll and Wiess
cf. Chaudhuri et al. (2010) PRL, v.99, p.060604
= Conditional probability of walker being at position » at time ¢

nnnnnnnn

1—¢1(s)+f(k)(¢1(s)—¢2(s))} g,
G, (k,s)=f,(k \
9= L) s(1—¢,(5) /() oo ol /
S Y= iy () f 1y (K p=u W/
fulk)=Cat*) " expCrj27) /./ -
Lo (k)= @222 )" explcr? /227 o
P = 7'1_1 exp(— t/Tl) p = 0.0004

P, = rl_l exp(— t/rz)

= Equivalent to Generalized Master Equation




Transport Heterogeneity: Crossing (@i,
Scales o

00 MSD(At) ~ A?HA)

0.1
3
Z
=
Non-Fickian
1073 0.001 0.1 10
At

H(At)

0.30 %\ |8
7 T, = (1/7,+1/7, + 1/75)"! @ o

ID l l l . Non-Gaussian

107 10 10 107" 0.01 1 ] s ﬂ

At
cf. K. Razi Naqvi and S. Waldenstrom (2005) PRL 95, 065901




Spectral Analysis

Transition Rate Matrix 0.05

Ps)
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Meso-Macro Model Development

=  Temperature distribution in isotropic, homogeneous, 3-
dimensional, infinite medium classically modeled by

. . . 0.5x107"'[
heat equation; heated by an instantaneous point source
at r=0
T(r.f) = Qexp(—r /4Dr) 1.x1072
87pC(Dt)™" 5.x107;
S ”
Q
=  Hence, T(0,t) scales as -3/2 1.x107°
r(0,0)~1 5.x107*
=  Discrete case (transport on a graph) return probability | 1|
pdiscr ( ) - Z exp( ﬂ’ t) 5.3110_51.3‘%0_4 5."‘110-41."%0-3 5.310-3

A

" In “thermodynamic” (continuum) limit, N - =, 7(0,t) = p(t) '

() = [ p(A) exp(-20)dA

= Thus,if p\) “ N, p(f)~¢ ) andv=d/2-1, withd
= 3 for the homogeneous, isotropic case above

=  Hence, scaling is anomalous with respect to classical 1078, 5 "
descriptions '

=  Could be measured... 1074
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Large Deviations in Disordered Networks™

= Statistical Mechanics of
“Trajectories”

= Use thermodynamic formalism for
systems with Markovian dynamics
= Largest Eigen value of modified

transition rate matrix is dynamical
free energy

Normalized P(a)

0.0
) ] -0.10 -0.05 0.00 0.05 0.10 0.15 0.20 0.25
= The negative of the rate function

can be viewed as a dynamical 1
entropy

—
S
[+

= QObtain convergence (in
distribution) of fluctuations in
diffusion coefficient

= Distributions reminiscent of _
“Extreme Value Statistics” (e.g., 1078}
Gumbel distribution)

Normalized P(a)
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N
0T;(t) =
k=

N
et (v}). 6T;(t) = z e it (Vk)j

2 k=2

1
f(rt) = (EZ 6T; (t)0T; (t")6(rij —7)o(t — t’))
Lj

8T() =T(t) = Teq= ) e My

—
1l
%]

-

ST(t) - 8TI(t") = C(t,t") = ¢;; = 8T;(t) 8T;(t)

1
(8T; (0)8T; (&) = Tr{C(0, )]

33




Large Deviation Function

SC lattice vs. Jammed
network
= Dynamic Phase Transition?

I(a)

0.05/

~0.2 -01 0.0 0.1
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