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Granular Materials are Ubiquitous
 Porous & granular materials 

important for many applications 
in HEDP
 Iron oxide studied in context of 

planetary formation/impact
 silica aerogel used to mimic 

liquid deuterium and impedance 
match target materials

 New materials from extreme 
states of matter

 New energy sources – ICF
 Shocked porous material reach 

higher temperatures at a given 
density – gives flexibility in 
accessing phase space
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More Particulate Materials at SNL
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Energetic materials Additive manufacturing (metal, 
polymer powder, pastes)

Spray coating Battery manufacturing Ceramic piece parts, 
glass ceramics

.. and more!

Approaches to particle/powder characterization and specification vary widely across these areas.
How do we get beyond “magic barrels” and design feedstocks/process to optimize device performance?

Examples: 
Metal additive manufacturing powders

 Chemical composition: min and max for desired elements, 
max weight percent for other elements (contaminants) 

 Particle size: min and max D10, D50, D90
 Particle shape: min and max aspect ratio, sphericity
 Flowability: max. Hausner ratio

Energetic materials
 Small scale/high consequence
 Specifications often based on empirically matching legacy 

materials
 Extensive characterization efforts on-going: single-particle 

micromechanics, bulk compaction, imaging, DEM mod/sim

Processing operations: re-crystallization, spray drying, milling, mixing/blending, granulation, die-filling, 
compaction, sintering, …



 Need better prediction and control of 
performance, reliability and safety of, e.g.,
 Energetic components
 Energy storage devices

 Heterogeneous materials
 “discontinuous” properties and discrete 

microstructure 
 multi-phase, multi-material  interfaces

 Heterogeneous “dynamics” 
 Spatial distribution of (relaxation) timescales

 “Anomalous” stochastic behavior
 Generalized Stochastic Models

 How do fluctuations couple to nonlinearities?

Process, Property, Performance Nexus:
 Role of Microstructure



Safety:  Thermal Runaway/Cookoff
 Performance questions

 How effective is it?
 How reliable is it?

 Safety questions
 Given conditions, go or no-go?
 How certain are you?

 Sources of uncertainty
 Epistemic

 Model parameters
 Aleatoric

 Model form
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Theory: Frank-Kamenetskii/Semenov
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The Multi-scale Transport through Particulate Media

(3) Sub-particle 
materials structure
• Crystal structure

• Anisotropy
• defects, 

impurities, 
etc.

• Polycrystalline
• Grain 

boundaries 

(4) Interfacial Scale
• Contact area, roughness, inter-diffusion
• Material types (e.g., phonon, electron dominated)

(2) Particle-Particle (Meso-
structure) Scale
• Inhomogeneous
• “Discrete”; Disordered
• “Anomalous” transport

(1) Bulk, Macroscale 
• Homogeneous
• “Continuum”
• Constant transport coef.
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Background: Random Walks in Particle Packs

 Jammed particles near “Point J”
 Critical-like “point” of marginal mechanical 

stability
 Control of apparent microstructural length scale

 Well defined process for creating packs
 Remove “rattlers”

 Random Walker Simulations
 Random walkers initially uniformly 

distributed within particles
 Particles conducting; voids insulating

 Reflecting (specular) BC at interface
– Neumann-like, no-flux

 Global periodic simulation domain

J
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Conductivity of Particulate Microstructures

 Results
 Late-time        function of pressure
 Controlled by particle contact radius
 Apparently, single relevant timescale

M
SD
(t)

D
(t)

D∞

t*

D0

Bruggeman EMA

“tortuosity”
t = D∞/D0  

Decreasing pressure

D∞



 Volume averaged MFPT per particle
 Narrow Escape

 Small, well separated contacts (aij << d, rij << d)
 Largest Eigen value of Laplace operator in sphere
     with mixed BC’s

 Particle averaged, volume averaged MFPT ~ bulk conductivity

i
j

Bulk Thermal Conductivity
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Cheviakov et al. (2010), Multiscale 
Model. Simul., v.8, pp.836–870



• Difference from, say, SC 
lattice – disordered graph
– Distribution of coord. #’s
– Distribution of 

forces/“overlaps”
• Distribution of contact radii
• Distribution of volume-
averaged MFPT

– Narrow Escape
» Multiple, well separated (a 

<< d) contacts
» Largest Eigen value of 

Laplace Operator in 
spherical domain with 
mixed (Dirichlet and 
Neumann) BC’s

Microstructural Details: Particle-Particle 
Interfaces

Weibull

Frechet

Gumbel



Discretizing the Mesoscale
 Reduced-order, network modeling based on random walk 

simulations/analysis for thermal conduction in particle packs 

Determine connectivity

Determine: edge weights (interfacial 
resolution and physics models)

Image stack,
or simulated
mstructure

graph of contact network

Transition Rate Matrix, Graph Laplacian …

i
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Thermal Runaway
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 Add nonlinearity
 1st order, irreversible reactions

 Periodic BC’s (adiabatic)
 IC: unit impulse to particle i

 Time to thermal runaway depends on 
particle, i
 Varying “sensitivity” for different particles
 Stochastic problem due to disorder in pack

 Interaction of fluctuations (due to 
disordered mesostructure) and 
nonlinearity

Hot spot



Evolution of Temperature Fluctuations



Eigenvector Statistics
 For ordered structure, each particle 

contributes like an independent, gaussian-
distributed random quantity for each of 
the N-1 eigenvectors associated with each 
eigenvalue

 For disordered structure, each particle 
contributes in a more complicated manner

 Ordered packs are locally and globally 
homogeneous; disorder packs are globally 
homogeneous but locally not so

 Statistical runaway time for disordered 
systems related to anomalous statistics in 
spectral properties of network transport 
operator



Stat. Mech of Trajectories:
Large Deviations

16Lecomte et al., Journal of Statistical Physics, Vol. 127, No. 1, April 
2007
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 Define landscape function

where G is the Green’s 
function,

 Modes localized to regions 
where 

Localization Theory: landscape 
function
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Summary & Conclusions
 Reduced-order, network-type model of thermal transport on 

particulate materials is possible
 Spectral analysis of conduction matrix allows for development of 

macro-scale models and analysis of thermal fluctuations due to 
disordered microstructure

 Addition of nonlinearity due to chemical reactions can be 
accomplished
 Comparison to classical Frank-Kamenetskii problem shows similar 

critical slowing down near critical point
 However, details of thermal runaway time show statistical 

characteristics due to disorder of microstructure
 DMD-type analysis allows for possibility of extending spectral analysis 

from linear to nonlinear equations through approximation of (linear) 
Koopman Operator
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Simulate Markov Process on Contact Network
 Discretize Continuous-Time  Equation

 I.C.
 Periodic B.C.’s

p = 0.0004 p = 0.00004



Eigenvectors and Statistics
 Eigenvectors

 small eigenvalues show plane
Cf. Silbert et al. (2009), PRE v.79, p.021308

 Close to Porter-Thomas 
distribution
 But, not quite

cf. Manning and Liu (2015), EPL v.109, p.36002

23Eigenvector for large l Eigenvector for small l



Large Deviations
 Process-structure
 Structure-property
 LD of sums of random variables

 Statistical Mechanics of 
“Trajectories”
 Use thermodynamic formalism 

for systems with Markovian 
dynamics

 Obtain convergence (in 
distribution) of fluctuations in 
diffusion coefficient

 Distributions reminiscent of 
“Extreme Value Statistics” (e.g., 
Gumbel distribution)
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Extending spectral analysis to discrete 
approximation of Koopman Operator
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Stochastic Models
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Example Simulation
 Random walk through interior of particles, where diffusion coefficient D0 = 1 
 Similar to method of Kim and Torquato1(“walk on spheres”), but modified to yield 

time-dependent behavior
 Random walker displacement relates to material properties
 “Narrow escape” hopping between neighboring particles requires long simulation 

times, but accounts for small contacts explicitly and accurately

271. Kim IC and Torquato S., J. Appl. Phys. 68 (1990): 3892; Kim IC and Torquato S., J. Appl. Phys. 69 (1991): 2280



Homogenized Models:  Bridging particle 
meso-scale to Bulk scale

 Consider Continuous-Time Random Walk a la Montroll and Wiess 
cf. Chaudhuri et al. (2010) PRL, v.99 , p.060604 

 Conditional probability of walker being at position r at time t

 Equivalent to Generalized Master Equation

p = 0.002

p = 0.0004



Transport Heterogeneity:  Crossing 
Scales

txtR = (1/tU +1/tI + 1/tB)-1 tdtD

phonon scattering

(em
ission and absorption)

interface scattering M
ic
ro
st
ru
ct
ur
e

l << d
tU  + tI << tB

MSD(Dt) ~ Dt2H(Dt)

cf. K. Razi Naqvi and S. Waldenstrom (2005) PRL 95, 065901

Non-Fickian

Non-Gaussian



• Transition Rate Matrix

Spectral Analysis
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decreasing pressure

Spectral Rigidity
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 Temperature distribution in isotropic, homogeneous, 3-
dimensional, infinite medium classically modeled by  
heat equation; heated by an instantaneous point source 
at r=0

 Hence, T(0,t) scales as

 Discrete case (transport on a graph) return probability

 In “thermodynamic” (continuum) limit, N → ∞, T(0,t) = 

 Thus, if ρ(λ) ~ λν ,                                 and ν = d/2-1 , with d 
= 3 for the homogeneous, isotropic case above

 Hence, scaling is anomalous with respect to classical 
descriptions

 Could be measured…

Meso-Macro Model Development



Large Deviations in Disordered Networks
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 Statistical Mechanics of 
“Trajectories”

 Use thermodynamic formalism for 
systems with Markovian dynamics
 Largest Eigen value of modified 

transition rate matrix is dynamical 
free energy

 The negative of the rate function 
can be viewed as a dynamical 
entropy

 Obtain convergence (in 
distribution) of fluctuations in 
diffusion coefficient

 Distributions reminiscent of 
“Extreme Value Statistics” (e.g., 
Gumbel distribution)



33



Large Deviation Function

 SC lattice vs. Jammed 
network
 Dynamic Phase Transition?
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