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An age-old solid mechanics problem
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[1]Hodowany et al., EM, 2001
[2]Rosiakis et al, JMPS, 2000

Under adiabatic 
conditions[1,2] 

Literature values for β for a range of 
materials adapted from Rittel, 2017 [3]

[3] Rittel et al, JMPS, 2017

β as a function of plastic 
strain for titanium alloy [1]

A common approach

 Assume β is constant in 
thermomechanical model



An age-old solid mechanics problem
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Key Scientific Question:  Can we accurately predict thermomechanical behavior (beyond just 
calibrating the Taylor-Quinney coefficient, β) if we consider a range of strain rates, loading 

conditions, material classes, thermal environments as well as perform microstructural analysis? 

Potential relevant problems 
include:
• thermal softening of materials
• understanding adiabatic shear bands
• puncture/ crush scenarios

Experimental challenges:
•  synchronization of full-field data
• accounting for heat losses at quasi-

static rates
• Microstructural changes
• Noise during data collection

[4] Karlson et al., Int. J. Frac, 2016 
[5] NHTSA, 2015 Honda Fit Report



Technical Approach
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“Beyond Beta”
A full understanding of 

thermomechanical coupling

Objective: Develop an improved, experimentally-informed approach to 
modeling plastic work heat generation
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“Beyond Beta”
A full understanding of 

thermomechanical coupling

This talk

Next talk:
Brian Lester

Objective: Develop an improved, experimentally-informed approach to 
modeling plastic work heat generation



Selected two materials which vary in thermal properties and 
material performance
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OFHC Copper
12” x 4” x 12” Thick Plate

600 µm

304L-VAR Stainless Steel
7.5” Round Bar Stock

k = 14.9 W/m-K
ρ-Cp = 3.77 MJ/m3-K

k = 401 W/m-K
ρ-Cp = 3.44 MJ/m3-K
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304L-VAR Stainless Steel
7.5” Round Bar Stock

This talk OFHC Copper
12” x 4” x 12” Thick Plate

600 µm

k = 14.9 W/m-K
ρ-Cp = 3.77 MJ/m3-K

k = 401 W/m-K
ρ-Cp = 3.44 MJ/m3-K



Experimental Setup- Quasi-static mechanical testing
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Test Conditions
• Strain rates: 10-3, 10-2, 10-1 s-1

• Temperatures: 25, 150, 300 C
• puncture/ crush scenarios

Metrology
• DIC for full-field strain
• IR camera for full-field thermography
• Thermocouples to capture heat 

transfer conditions
• Data synced with a single trigger

Convective furnace on 
MTS servo-hydraulic 

load frame

FLIR IR Camera

IR transparent window 
and lighting for DIC



Experimental Setup- Quasi-static mechanical testing

7

Specimen Design
• Flat surfaces for metrology
• Different geometries to 

evaluate heat transfer/ size 
effects



Experimental Setup- Quasi-static mechanical testing
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Thermocouples in 
the furnace
• Calibrate heat transfer 

conditions
• Compare to IR camera 

signal
X

X

X

X

X

X

X X

Inconel Posts

17-4 collet 
grips

Liquid cooling

Liquid cooling

17-4 collet 
grips

Inconel Posts

X

X

X



Synchronized Full-field data for model calibration- Quasi-static
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Stress- Strain 
Response

Full-field Strains from Digital 
Image Correlation (DIC)

Full-field Temperatures from 
Infrared (IR)

Full-field data:
• Reveals heterogeneity in thermomechanical response and localization phenomena
• Provides insight into uncertainty of point measurements 



Results
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Slow (10-3/s)
25C

Fast (10-1/s)
25C

Fast (10-1/s)
300C

X

X

X



Results
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Taylor-Quinney Coefficients
• Varies with strain rate and temperature heat transfer conditions
• Non-uniform across deformation

Slow (10-3/s)
25C

Fast (10-1/s)
25C

Fast (10-1/s)
300C
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Goal:  Understand the microstructural mechanisms that lead to differences in the conversion of plastic work to heat

Key conclusions: (1) Without temperature rise, at very slow quasi-static rates, defect formation preferentially occurs in 
the 110 (blue) grains only, and 111/100 grains (red) preferentially reorient instead.  At faster rates, all grains form 
defects (i.e. two main deformation mechanisms identified which vary with testing rate); (2) Electron Channel Contrast 
Imaging preliminary results are semi-quantitative

EBSD Inverse Pole Figure
(slow strain rate)

ECCI Analysis
(slow strain rate)

Defects

Defect Density:
109-108 cm-2 (blue)

107 cm-2 (red)

ECCI Analysis
(fast strain rate)

EBSD Inverse Pole Figure
(fast strain rate)

Defects

Defect Density:
109-108 cm-2 (all)

Preliminary results show microstructural basis for mechanical 
behavior



Hopkinson bar tests
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1mm

IR ThermographyIR Camera Telops M3K

High-Speed 
Infrared-
Camera 

High-Speed 
Infrared-
Detector 

Sample

Thermocouple 

IR 
collection 

optics

Hopkinson 
Bar 

Strain-Gages



Experimental Uncertainty
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IR Camera

Temperature U (µm) V (µm) W (µm) εxx (µε) εyy (µε) εxy (µε)
25C 0.59 0.56 2.57 91.52 170.20 104.71

300C 2.87 3.54 15.24 722.40 599.71 518.23

DIC Noise Floor



Summary and Future Work
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• Acquired full-field strain and temperature measurements for two materials
o  Strain rates spanning 3 orders of magnitude
o  Temperatures from 25 to 300 C

• Characterized microstructure before and after deformation
o Identified local grain and dislocation structures

• Incorporate microstructure, strain rate, and temperature dependence into a 
new model beyond beta

• Propagate uncertainty in experimental measurements into calculations and 
thermomechanical models
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Material Calibration
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0.95 for beta



Thermal BCs (from Wyatt)
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conduction

convectionStored 
energy

h = 21.7 ± 0.9 
W/m2/K 

produces best 
fit across 4 

datasets

Convection Coefficient – W/
(m2K)

Maximum Temperature - 
ºC Maximum Delta T- ºC

2 109 82

5 99 72

10 88 61

25 68 41

50 54 27

100 43 16

Convection coefficient plays large role in measured ΔT
Using data from Exploratory Express

At room temperature:

Goal: Determine if we can successfully mitigate error from heat loss measurements and/or determine the slowest quasi-
static rate attainable with reasonable error

Large change 
in predicted 
ΔT with 

increasing 
convection 
coefficient!

IR Camera

DIC 
Cameras

Camera 
Viewport

Clevis 
Grips

TCs

Pull 
Direction

Experimental Setup

Key conclusions: (1) We have high confidence in our thermal loss metric from thermal modeling; (2) We are now using 
thermal model to inform boundary conditions for the coupled thermomechanical simulation



Validation Specimen Geometries
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Calibration Data (BB and DF)
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Leveling Approach Explained
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S03 Field/Leveling Comparison
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Adagio Arpeggio



S05 Field/Leveling Comparision
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Adagio Arpeggio VariableBeta



Copper Texture
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